* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y)))
- Signature:
{le/2,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {le,minus,quot} and constructors {0,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,0()) -> x
minus(s(x),s(y)) -> minus(x,y)
quot(0(),s(y)) -> 0()
quot(s(x),s(y)) -> s(quot(minus(s(x),s(y)),s(y)))
- Signature:
{le/2,minus/2,quot/2} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {le,minus,quot} and constructors {0,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
le(x,y){x -> s(x),y -> s(y)} =
le(s(x),s(y)) ->^+ le(x,y)
= C[le(x,y) = le(x,y){}]
WORST_CASE(Omega(n^1),?)