(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
bits(0) → 0
bits(s(x)) → s(bits(half(s(x))))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
Tuples:
HALF(0) → c
HALF(s(0)) → c1
HALF(s(s(z0))) → c2(HALF(z0))
BITS(0) → c3
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
S tuples:
HALF(0) → c
HALF(s(0)) → c1
HALF(s(s(z0))) → c2(HALF(z0))
BITS(0) → c3
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
Defined Rule Symbols:
half, bits
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
HALF(s(0)) → c1
HALF(0) → c
BITS(0) → c3
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
Defined Rule Symbols:
half, bits
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
bits(0) → 0
bits(s(z0)) → s(bits(half(s(z0))))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(z0)) → c4(BITS(half(s(z0))), HALF(s(z0)))
K tuples:none
Defined Rule Symbols:
half
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
BITS(
s(
z0)) →
c4(
BITS(
half(
s(
z0))),
HALF(
s(
z0))) by
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
K tuples:none
Defined Rule Symbols:
half
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
BITS(s(0)) → c4(BITS(0), HALF(s(0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
K tuples:none
Defined Rule Symbols:
half
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
We considered the (Usable) Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
And the Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(BITS(x1)) = x1
POL(HALF(x1)) = 0
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(half(x1)) = x1
POL(s(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
K tuples:
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
Defined Rule Symbols:
half
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
HALF(s(s(z0))) → c2(HALF(z0))
We considered the (Usable) Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
And the Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(BITS(x1)) = x12
POL(HALF(x1)) = [1] + x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(half(x1)) = x1
POL(s(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
half(0) → 0
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
S tuples:none
K tuples:
BITS(s(s(z0))) → c4(BITS(s(half(z0))), HALF(s(s(z0))))
HALF(s(s(z0))) → c2(HALF(z0))
Defined Rule Symbols:
half
Defined Pair Symbols:
HALF, BITS
Compound Symbols:
c2, c4
(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(16) BOUNDS(1, 1)