0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 222 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 68 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 158 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 28 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 1752 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 626 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^2)
p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))
p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, y) → if(le(x, y), x, y) [1]
if(true, x, y) → 0 [1]
if(false, x, y) → s(minus(p(x), y)) [1]
p(0) → 0 [1]
p(s(x)) → x [1]
le(0, y) → true [1]
le(s(x), 0) → false [1]
le(s(x), s(y)) → le(x, y) [1]
minus(x, y) → if(le(x, y), x, y) [1]
if(true, x, y) → 0 [1]
if(false, x, y) → s(minus(p(x), y)) [1]
p :: 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s le :: 0:s → 0:s → true:false true :: true:false false :: true:false minus :: 0:s → 0:s → 0:s if :: true:false → 0:s → 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
minus
if
p
le
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
true => 1
false => 0
if(z, z', z'') -{ 1 }→ 0 :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(x1, y) :|: x1 >= 0, z'' = y, y >= 0, z' = 1 + x1, z = 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, y) :|: z'' = y, y >= 0, z = 0, z' = 0
le(z, z') -{ 1 }→ le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
le(z, z') -{ 1 }→ 1 :|: y >= 0, z = 0, z' = y
le(z, z') -{ 1 }→ 0 :|: x >= 0, z = 1 + x, z' = 0
minus(z, z') -{ 2 }→ if(le(x'', y'), 1 + x'', 1 + y') :|: z = 1 + x'', y' >= 0, z' = 1 + y', x'' >= 0
minus(z, z') -{ 2 }→ if(1, 0, y) :|: y >= 0, z = 0, z' = y
minus(z, z') -{ 2 }→ if(0, 1 + x', 0) :|: z = 1 + x', x' >= 0, z' = 0
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ 0 :|: z = 0
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
{ le } { p } { if, minus } |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: ?, size: O(1) [1] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 }→ le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 }→ if(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] p: runtime: ?, size: O(n1) [z] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n1) [z] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n1) [z] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n1) [z] if: runtime: ?, size: O(n1) [1 + z'] minus: runtime: ?, size: O(n1) [1 + z] |
if(z, z', z'') -{ 1 }→ 0 :|: z = 1, z' >= 0, z'' >= 0
if(z, z', z'') -{ 2 }→ 1 + minus(0, z'') :|: z'' >= 0, z = 0, z' = 0
if(z, z', z'') -{ 2 }→ 1 + minus(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0
le(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0
le(z, z') -{ 1 }→ 1 :|: z' >= 0, z = 0
le(z, z') -{ 1 }→ 0 :|: z - 1 >= 0, z' = 0
minus(z, z') -{ 2 + z' }→ if(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0
minus(z, z') -{ 2 }→ if(1, 0, z') :|: z' >= 0, z = 0
minus(z, z') -{ 2 }→ if(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0
p(z) -{ 1 }→ 0 :|: z = 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
le: runtime: O(n1) [1 + z'], size: O(1) [1] p: runtime: O(1) [1], size: O(n1) [z] if: runtime: O(n2) [9 + 4·z' + z'·z'' + z''], size: O(n1) [1 + z'] minus: runtime: O(n2) [11 + 4·z + z·z' + 2·z'], size: O(n1) [1 + z] |