* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(x,0(),s(z)) -> s(quot(x,plus(z,s(0())),s(z)))
            quot(0(),s(y),s(z)) -> 0()
            quot(s(x),s(y),z) -> quot(x,y,z)
        - Signature:
            {plus/2,quot/3} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus,quot} and constructors {0,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(x,0(),s(z)) -> s(quot(x,plus(z,s(0())),s(z)))
            quot(0(),s(y),s(z)) -> 0()
            quot(s(x),s(y),z) -> quot(x,y,z)
        - Signature:
            {plus/2,quot/3} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {plus,quot} and constructors {0,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          plus(x,y){x -> s(x)} =
            plus(s(x),y) ->^+ s(plus(x,y))
              = C[plus(x,y) = plus(x,y){}]

WORST_CASE(Omega(n^1),?)