* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a() -> b()
            a() -> c()
            gcd(x,y) -> gcd2(x,y,0())
            gcd2(x,y,i) -> if1(le(x,0()),le(y,0()),le(x,y),le(y,x),x,y,inc(i))
            if1(false(),b1,b2,b3,x,y,i) -> if2(b1,b2,b3,x,y,i)
            if1(true(),b1,b2,b3,x,y,i) -> pair(result(y),neededIterations(i))
            if2(false(),b2,b3,x,y,i) -> if3(b2,b3,x,y,i)
            if2(true(),b2,b3,x,y,i) -> pair(result(x),neededIterations(i))
            if3(false(),b3,x,y,i) -> gcd2(minus(x,y),y,i)
            if3(true(),b3,x,y,i) -> if4(b3,x,y,i)
            if4(false(),x,y,i) -> gcd2(x,minus(y,x),i)
            if4(true(),x,y,i) -> pair(result(x),neededIterations(i))
            inc(0()) -> 0()
            inc(s(i)) -> s(inc(i))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {a/0,gcd/2,gcd2/3,if1/7,if2/6,if3/5,if4/4,inc/1,le/2,minus/2} / {0/0,b/0,c/0,false/0,neededIterations/1
            ,pair/2,result/1,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,gcd,gcd2,if1,if2,if3,if4,inc,le
            ,minus} and constructors {0,b,c,false,neededIterations,pair,result,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a() -> b()
            a() -> c()
            gcd(x,y) -> gcd2(x,y,0())
            gcd2(x,y,i) -> if1(le(x,0()),le(y,0()),le(x,y),le(y,x),x,y,inc(i))
            if1(false(),b1,b2,b3,x,y,i) -> if2(b1,b2,b3,x,y,i)
            if1(true(),b1,b2,b3,x,y,i) -> pair(result(y),neededIterations(i))
            if2(false(),b2,b3,x,y,i) -> if3(b2,b3,x,y,i)
            if2(true(),b2,b3,x,y,i) -> pair(result(x),neededIterations(i))
            if3(false(),b3,x,y,i) -> gcd2(minus(x,y),y,i)
            if3(true(),b3,x,y,i) -> if4(b3,x,y,i)
            if4(false(),x,y,i) -> gcd2(x,minus(y,x),i)
            if4(true(),x,y,i) -> pair(result(x),neededIterations(i))
            inc(0()) -> 0()
            inc(s(i)) -> s(inc(i))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(0(),y) -> 0()
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {a/0,gcd/2,gcd2/3,if1/7,if2/6,if3/5,if4/4,inc/1,le/2,minus/2} / {0/0,b/0,c/0,false/0,neededIterations/1
            ,pair/2,result/1,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,gcd,gcd2,if1,if2,if3,if4,inc,le
            ,minus} and constructors {0,b,c,false,neededIterations,pair,result,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          inc(x){x -> s(x)} =
            inc(s(x)) ->^+ s(inc(x))
              = C[inc(x) = inc(x){}]

WORST_CASE(Omega(n^1),?)