* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            g(a(),g(x,g(b(),g(a(),g(x,y))))) -> g(a(),g(a(),g(a(),g(x,g(b(),g(b(),y))))))
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2} / {a/0,b/0,c/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,h,i} and constructors {a,b,c,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            g(a(),g(x,g(b(),g(a(),g(x,y))))) -> g(a(),g(a(),g(a(),g(x,g(b(),g(b(),y))))))
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2} / {a/0,b/0,c/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,h,i} and constructors {a,b,c,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
          f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
          g#(x,x) -> c_3(g#(a(),b()))
          g#(a(),g(x,g(b(),g(a(),g(x,y))))) -> c_4(g#(a(),g(a(),g(a(),g(x,g(b(),g(b(),y))))))
                                                  ,g#(a(),g(a(),g(x,g(b(),g(b(),y)))))
                                                  ,g#(a(),g(x,g(b(),g(b(),y))))
                                                  ,g#(x,g(b(),g(b(),y)))
                                                  ,g#(b(),g(b(),y))
                                                  ,g#(b(),y))
          h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
          h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
          h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
          i#(x,x) -> c_8(i#(a(),b()))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            g#(x,x) -> c_3(g#(a(),b()))
            g#(a(),g(x,g(b(),g(a(),g(x,y))))) -> c_4(g#(a(),g(a(),g(a(),g(x,g(b(),g(b(),y))))))
                                                    ,g#(a(),g(a(),g(x,g(b(),g(b(),y)))))
                                                    ,g#(a(),g(x,g(b(),g(b(),y))))
                                                    ,g#(x,g(b(),g(b(),y)))
                                                    ,g#(b(),g(b(),y))
                                                    ,g#(b(),y))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
            h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
            i#(x,x) -> c_8(i#(a(),b()))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            g(a(),g(x,g(b(),g(a(),g(x,y))))) -> g(a(),g(a(),g(a(),g(x,g(b(),g(b(),y))))))
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          f(g(s(x),y)) -> f(g(x,s(y)))
          f(s(x)) -> s(s(f(h(s(x)))))
          g(x,x) -> g(a(),b())
          h(g(x,s(y))) -> h(g(s(x),y))
          h(i(x,y)) -> i(i(c(),h(h(y))),x)
          h(s(f(x))) -> h(f(x))
          i(x,x) -> i(a(),b())
          f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
          f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
          g#(x,x) -> c_3(g#(a(),b()))
          h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
          h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
          h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
          i#(x,x) -> c_8(i#(a(),b()))
* Step 4: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            g#(x,x) -> c_3(g#(a(),b()))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
            h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
            i#(x,x) -> c_8(i#(a(),b()))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {3,7}
        by application of
          Pre({3,7}) = {1,4,5}.
        Here rules are labelled as follows:
          1: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
          2: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
          3: g#(x,x) -> c_3(g#(a(),b()))
          4: h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
          5: h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
          6: h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
          7: i#(x,x) -> c_8(i#(a(),b()))
* Step 5: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
            h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            g#(x,x) -> c_3(g#(a(),b()))
            i#(x,x) -> c_8(i#(a(),b()))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_2 g#(x,x) -> c_3(g#(a(),b())):6
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
          2:S:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
             -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
          3:S:h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_2 g#(x,x) -> c_3(g#(a(),b())):6
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
          
          4:S:h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
             -->_4 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_3 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_2 i#(x,x) -> c_8(i#(a(),b())):7
             -->_1 i#(x,x) -> c_8(i#(a(),b())):7
             -->_4 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_3 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_4 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
             -->_3 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
          
          5:S:h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
             -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
          6:W:g#(x,x) -> c_3(g#(a(),b()))
             
          
          7:W:i#(x,x) -> c_8(i#(a(),b()))
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: g#(x,x) -> c_3(g#(a(),b()))
          7: i#(x,x) -> c_8(i#(a(),b()))
* Step 6: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
            h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/2,c_2/2,c_3/1,c_4/6,c_5/2,c_6/4,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y)))
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
          2:S:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
             -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
          3:S:h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
          
          4:S:h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y))
             -->_4 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_3 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_4 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_3 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_4 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
             -->_3 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
          
          5:S:h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(i#(i(c(),h(h(y))),x),i#(c(),h(h(y))),h#(h(y)),h#(y)):4
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y)),g#(s(x),y)):3
             -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y))),g#(x,s(y))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
          h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
          h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
* Step 7: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
          
        The strictly oriented rules are moved into the weak component.
** Step 7.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {f,g,h,i,f#,g#,h#,i#}
        TcT has computed the following interpretation:
            p(a) = [0]                          
                   [0]                          
                   [0]                          
            p(b) = [0]                          
                   [0]                          
                   [0]                          
            p(c) = [0]                          
                   [0]                          
                   [0]                          
            p(f) = [1 0 0]      [1]             
                   [1 1 0] x1 + [1]             
                   [1 1 1]      [0]             
            p(g) = [0 0 0]      [0]             
                   [0 0 0] x2 + [0]             
                   [0 0 1]      [0]             
            p(h) = [0 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [1 1 0]      [0]             
            p(i) = [0 0 1]      [0 0 0]      [0]
                   [1 1 1] x1 + [0 0 0] x2 + [0]
                   [0 0 0]      [1 1 1]      [0]
            p(s) = [0 1 1]      [1]             
                   [0 0 0] x1 + [0]             
                   [0 0 1]      [0]             
           p(f#) = [1 0 0]      [0]             
                   [0 1 0] x1 + [0]             
                   [0 0 0]      [1]             
           p(g#) = [0]                          
                   [0]                          
                   [0]                          
           p(h#) = [0 0 1]      [0]             
                   [0 0 1] x1 + [0]             
                   [1 0 0]      [1]             
           p(i#) = [0]                          
                   [0]                          
                   [0]                          
          p(c_1) = [1 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 1]      [0]             
          p(c_2) = [1 0 0]      [1 0 0]      [0]
                   [0 0 0] x1 + [0 0 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [1]
          p(c_3) = [0]                          
                   [0]                          
                   [0]                          
          p(c_4) = [0]                          
                   [0]                          
                   [0]                          
          p(c_5) = [1 0 0]      [0]             
                   [1 0 0] x1 + [0]             
                   [0 0 0]      [1]             
          p(c_6) = [1 0 0]      [1 0 0]      [0]
                   [0 0 0] x1 + [1 0 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [1]
          p(c_7) = [1 1 0]      [0]             
                   [1 1 0] x2 + [0]             
                   [0 0 0]      [0]             
          p(c_8) = [0]                          
                   [0]                          
                   [0]                          
        
        Following rules are strictly oriented:
        f#(s(x)) = [0 1 1]     [1]          
                   [0 0 0] x + [0]          
                   [0 0 0]     [1]          
                 > [0 0 1]     [0]          
                   [0 0 0] x + [0]          
                   [0 0 0]     [1]          
                 = c_2(f#(h(s(x))),h#(s(x)))
        
        
        Following rules are (at-least) weakly oriented:
        f#(g(s(x),y)) =  [0]                        
                         [0]                        
                         [1]                        
                      >= [0]                        
                         [0]                        
                         [1]                        
                      =  c_1(f#(g(x,s(y))))         
        
        h#(g(x,s(y))) =  [0 0 1]     [0]            
                         [0 0 1] y + [0]            
                         [0 0 0]     [1]            
                      >= [0 0 1]     [0]            
                         [0 0 1] y + [0]            
                         [0 0 0]     [1]            
                      =  c_5(h#(g(s(x),y)))         
        
           h#(i(x,y)) =  [0 0 0]     [1 1 1]     [0]
                         [0 0 0] x + [1 1 1] y + [0]
                         [0 0 1]     [0 0 0]     [1]
                      >= [1 1 1]     [0]            
                         [0 0 1] y + [0]            
                         [0 0 0]     [1]            
                      =  c_6(h#(h(y)),h#(y))        
        
          h#(s(f(x))) =  [1 1 1]     [0]            
                         [1 1 1] x + [0]            
                         [2 2 1]     [3]            
                      >= [1 1 0]     [0]            
                         [1 1 0] x + [0]            
                         [0 0 0]     [0]            
                      =  c_7(h#(f(x)),f#(x))        
        
         f(g(s(x),y)) =  [0 0 0]     [1]            
                         [0 0 0] y + [1]            
                         [0 0 1]     [0]            
                      >= [0 0 0]     [1]            
                         [0 0 0] y + [1]            
                         [0 0 1]     [0]            
                      =  f(g(x,s(y)))               
        
              f(s(x)) =  [0 1 1]     [2]            
                         [0 1 1] x + [2]            
                         [0 1 2]     [1]            
                      >= [0 1 1]     [2]            
                         [0 0 0] x + [0]            
                         [0 1 1]     [1]            
                      =  s(s(f(h(s(x)))))           
        
               g(x,x) =  [0 0 0]     [0]            
                         [0 0 0] x + [0]            
                         [0 0 1]     [0]            
                      >= [0]                        
                         [0]                        
                         [0]                        
                      =  g(a(),b())                 
        
         h(g(x,s(y))) =  [0]                        
                         [0]                        
                         [0]                        
                      >= [0]                        
                         [0]                        
                         [0]                        
                      =  h(g(s(x),y))               
        
            h(i(x,y)) =  [0 0 0]     [0]            
                         [0 0 0] x + [0]            
                         [1 1 2]     [0]            
                      >= [0 0 0]     [0]            
                         [0 0 0] x + [0]            
                         [1 1 1]     [0]            
                      =  i(i(c(),h(h(y))),x)        
        
           h(s(f(x))) =  [0 0 0]     [0]            
                         [0 0 0] x + [0]            
                         [2 2 1]     [2]            
                      >= [0 0 0]     [0]            
                         [0 0 0] x + [0]            
                         [2 1 0]     [2]            
                      =  h(f(x))                    
        
               i(x,x) =  [0 0 1]     [0]            
                         [1 1 1] x + [0]            
                         [1 1 1]     [0]            
                      >= [0]                        
                         [0]                        
                         [0]                        
                      =  i(a(),b())                 
        
** Step 7.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 7.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
          
        The strictly oriented rules are moved into the weak component.
*** Step 7.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {f,g,h,i,f#,g#,h#,i#}
        TcT has computed the following interpretation:
            p(a) = [0]                                 
                   [0]                                 
            p(b) = [0]                                 
                   [0]                                 
            p(c) = [0]                                 
                   [0]                                 
            p(f) = [0 0] x1 + [0]                      
                   [2 2]      [2]                      
            p(g) = [0 0] x1 + [0 1] x2 + [0]           
                   [0 2]      [0 0]      [0]           
            p(h) = [0 0] x1 + [0]                      
                   [1 0]      [0]                      
            p(i) = [3 1] x1 + [0 0] x2 + [0]           
                   [0 0]      [3 1]      [0]           
            p(s) = [0 0] x1 + [0]                      
                   [0 1]      [1]                      
           p(f#) = [2 2] x1 + [3]                      
                   [0 0]      [1]                      
           p(g#) = [2 1] x1 + [1 2] x2 + [0]           
                   [0 0]      [0 0]      [1]           
           p(h#) = [2 1] x1 + [0]                      
                   [0 0]      [1]                      
           p(i#) = [0 0] x2 + [0]                      
                   [0 1]      [1]                      
          p(c_1) = [1 1] x1 + [0]                      
                   [0 1]      [0]                      
          p(c_2) = [1 0] x1 + [1 0] x2 + [1]           
                   [0 0]      [0 0]      [1]           
          p(c_3) = [0]                                 
                   [0]                                 
          p(c_4) = [0 0] x2 + [0 0] x3 + [0 0] x6 + [0]
                   [2 0]      [0 2]      [2 0]      [1]
          p(c_5) = [1 0] x1 + [0]                      
                   [0 1]      [0]                      
          p(c_6) = [1 0] x1 + [1 0] x2 + [0]           
                   [0 0]      [0 0]      [0]           
          p(c_7) = [1 0] x2 + [0]                      
                   [0 1]      [0]                      
          p(c_8) = [2]                                 
                   [0]                                 
        
        Following rules are strictly oriented:
        f#(g(s(x),y)) = [0 4] x + [0 2] y + [7]
                        [0 0]     [0 0]     [1]
                      > [0 4] x + [0 2] y + [6]
                        [0 0]     [0 0]     [1]
                      = c_1(f#(g(x,s(y))))     
        
        
        Following rules are (at-least) weakly oriented:
             f#(s(x)) =  [0 2] x + [5]            
                         [0 0]     [1]            
                      >= [0 1] x + [5]            
                         [0 0]     [1]            
                      =  c_2(f#(h(s(x))),h#(s(x)))
        
        h#(g(x,s(y))) =  [0 2] x + [0 2] y + [2]  
                         [0 0]     [0 0]     [1]  
                      >= [0 2] x + [0 2] y + [2]  
                         [0 0]     [0 0]     [1]  
                      =  c_5(h#(g(s(x),y)))       
        
           h#(i(x,y)) =  [6 2] x + [3 1] y + [0]  
                         [0 0]     [0 0]     [1]  
                      >= [3 1] y + [0]            
                         [0 0]     [0]            
                      =  c_6(h#(h(y)),h#(y))      
        
          h#(s(f(x))) =  [2 2] x + [3]            
                         [0 0]     [1]            
                      >= [2 2] x + [3]            
                         [0 0]     [1]            
                      =  c_7(h#(f(x)),f#(x))      
        
         f(g(s(x),y)) =  [0 0] x + [0 0] y + [0]  
                         [0 4]     [0 2]     [6]  
                      >= [0 0] x + [0 0] y + [0]  
                         [0 4]     [0 2]     [4]  
                      =  f(g(x,s(y)))             
        
              f(s(x)) =  [0 0] x + [0]            
                         [0 2]     [4]            
                      >= [0]                      
                         [4]                      
                      =  s(s(f(h(s(x)))))         
        
               g(x,x) =  [0 1] x + [0]            
                         [0 2]     [0]            
                      >= [0]                      
                         [0]                      
                      =  g(a(),b())               
        
         h(g(x,s(y))) =  [0 0] y + [0]            
                         [0 1]     [1]            
                      >= [0 0] y + [0]            
                         [0 1]     [0]            
                      =  h(g(s(x),y))             
        
            h(i(x,y)) =  [0 0] x + [0]            
                         [3 1]     [0]            
                      >= [0 0] x + [0]            
                         [3 1]     [0]            
                      =  i(i(c(),h(h(y))),x)      
        
           h(s(f(x))) =  [0]                      
                         [0]                      
                      >= [0]                      
                         [0]                      
                      =  h(f(x))                  
        
               i(x,x) =  [3 1] x + [0]            
                         [3 1]     [0]            
                      >= [0]                      
                         [0]                      
                      =  i(a(),b())               
        
*** Step 7.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 7.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
          
        The strictly oriented rules are moved into the weak component.
**** Step 7.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {f,g,h,i,f#,g#,h#,i#}
        TcT has computed the following interpretation:
            p(a) = [0]                      
                   [0]                      
            p(b) = [0]                      
                   [0]                      
            p(c) = [0]                      
                   [0]                      
            p(f) = [3 0] x1 + [1]           
                   [0 0]      [0]           
            p(g) = [1 0] x1 + [1 0] x2 + [0]
                   [0 0]      [2 0]      [1]
            p(h) = [0 0] x1 + [0]           
                   [2 0]      [0]           
            p(i) = [1 1] x1 + [0 0] x2 + [0]
                   [0 0]      [2 1]      [0]
            p(s) = [1 0] x1 + [2]           
                   [0 0]      [0]           
           p(f#) = [0 0] x1 + [0]           
                   [1 1]      [0]           
           p(g#) = [0 0] x2 + [2]           
                   [0 1]      [1]           
           p(h#) = [0 1] x1 + [0]           
                   [0 0]      [0]           
           p(i#) = [0]                      
                   [0]                      
          p(c_1) = [2 0] x1 + [0]           
                   [0 0]      [3]           
          p(c_2) = [2 0] x1 + [2 0] x2 + [0]
                   [0 0]      [0 0]      [0]
          p(c_3) = [2]                      
                   [0]                      
          p(c_4) = [0 1] x2 + [0]           
                   [2 0]      [0]           
          p(c_5) = [1 0] x1 + [2]           
                   [0 0]      [0]           
          p(c_6) = [1 0] x1 + [1 0] x2 + [0]
                   [0 1]      [0 0]      [0]
          p(c_7) = [1 0] x2 + [0]           
                   [0 0]      [0]           
          p(c_8) = [0 0] x1 + [1]           
                   [0 1]      [1]           
        
        Following rules are strictly oriented:
        h#(g(x,s(y))) = [2 0] y + [5]     
                        [0 0]     [0]     
                      > [2 0] y + [3]     
                        [0 0]     [0]     
                      = c_5(h#(g(s(x),y)))
        
        
        Following rules are (at-least) weakly oriented:
        f#(g(s(x),y)) =  [0 0] x + [0 0] y + [0]  
                         [1 0]     [3 0]     [3]  
                      >= [0]                      
                         [3]                      
                      =  c_1(f#(g(x,s(y))))       
        
             f#(s(x)) =  [0 0] x + [0]            
                         [1 0]     [2]            
                      >= [0]                      
                         [0]                      
                      =  c_2(f#(h(s(x))),h#(s(x)))
        
           h#(i(x,y)) =  [2 1] y + [0]            
                         [0 0]     [0]            
                      >= [2 1] y + [0]            
                         [0 0]     [0]            
                      =  c_6(h#(h(y)),h#(y))      
        
          h#(s(f(x))) =  [0]                      
                         [0]                      
                      >= [0]                      
                         [0]                      
                      =  c_7(h#(f(x)),f#(x))      
        
         f(g(s(x),y)) =  [3 0] x + [3 0] y + [7]  
                         [0 0]     [0 0]     [0]  
                      >= [3 0] x + [3 0] y + [7]  
                         [0 0]     [0 0]     [0]  
                      =  f(g(x,s(y)))             
        
              f(s(x)) =  [3 0] x + [7]            
                         [0 0]     [0]            
                      >= [5]                      
                         [0]                      
                      =  s(s(f(h(s(x)))))         
        
               g(x,x) =  [2 0] x + [0]            
                         [2 0]     [1]            
                      >= [0]                      
                         [1]                      
                      =  g(a(),b())               
        
         h(g(x,s(y))) =  [0 0] x + [0 0] y + [0]  
                         [2 0]     [2 0]     [4]  
                      >= [0 0] x + [0 0] y + [0]  
                         [2 0]     [2 0]     [4]  
                      =  h(g(s(x),y))             
        
            h(i(x,y)) =  [0 0] x + [0]            
                         [2 2]     [0]            
                      >= [0 0] x + [0]            
                         [2 1]     [0]            
                      =  i(i(c(),h(h(y))),x)      
        
           h(s(f(x))) =  [0 0] x + [0]            
                         [6 0]     [6]            
                      >= [0 0] x + [0]            
                         [6 0]     [2]            
                      =  h(f(x))                  
        
               i(x,x) =  [1 1] x + [0]            
                         [2 1]     [0]            
                      >= [0]                      
                         [0]                      
                      =  i(a(),b())               
        
**** Step 7.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 7.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
          
        The strictly oriented rules are moved into the weak component.
***** Step 7.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {f,g,h,i,f#,g#,h#,i#}
        TcT has computed the following interpretation:
            p(a) = [0]                                 
                   [0]                                 
            p(b) = [0]                                 
                   [0]                                 
            p(c) = [0]                                 
                   [0]                                 
            p(f) = [3 2] x1 + [3]                      
                   [3 2]      [3]                      
            p(g) = [0 2] x1 + [0]                      
                   [0 0]      [2]                      
            p(h) = [0 0] x1 + [0]                      
                   [1 0]      [0]                      
            p(i) = [1 2] x1 + [0 0] x2 + [0]           
                   [0 0]      [1 2]      [0]           
            p(s) = [0 1] x1 + [1]                      
                   [0 1]      [0]                      
           p(f#) = [3 2] x1 + [2]                      
                   [0 0]      [1]                      
           p(g#) = [2 0] x2 + [0]                      
                   [0 0]      [0]                      
           p(h#) = [0 2] x1 + [0]                      
                   [0 0]      [0]                      
           p(i#) = [0 0] x2 + [0]                      
                   [1 0]      [0]                      
          p(c_1) = [1 0] x1 + [0]                      
                   [0 1]      [0]                      
          p(c_2) = [1 1] x1 + [1 0] x2 + [0]           
                   [0 0]      [0 1]      [1]           
          p(c_3) = [1]                                 
                   [0]                                 
          p(c_4) = [0 2] x1 + [0 2] x2 + [2 1] x4 + [1]
                   [0 2]      [2 0]      [0 0]      [1]
          p(c_5) = [1 1] x1 + [0]                      
                   [0 0]      [0]                      
          p(c_6) = [1 0] x1 + [2 0] x2 + [0]           
                   [0 0]      [0 0]      [0]           
          p(c_7) = [2 0] x2 + [0]                      
                   [0 0]      [0]                      
          p(c_8) = [0]                                 
                   [2]                                 
        
        Following rules are strictly oriented:
        h#(s(f(x))) = [6 4] x + [6]      
                      [0 0]     [0]      
                    > [6 4] x + [4]      
                      [0 0]     [0]      
                    = c_7(h#(f(x)),f#(x))
        
        
        Following rules are (at-least) weakly oriented:
        f#(g(s(x),y)) =  [0 6] x + [6]            
                         [0 0]     [1]            
                      >= [0 6] x + [6]            
                         [0 0]     [1]            
                      =  c_1(f#(g(x,s(y))))       
        
             f#(s(x)) =  [0 5] x + [5]            
                         [0 0]     [1]            
                      >= [0 4] x + [5]            
                         [0 0]     [1]            
                      =  c_2(f#(h(s(x))),h#(s(x)))
        
        h#(g(x,s(y))) =  [4]                      
                         [0]                      
                      >= [4]                      
                         [0]                      
                      =  c_5(h#(g(s(x),y)))       
        
           h#(i(x,y)) =  [2 4] y + [0]            
                         [0 0]     [0]            
                      >= [2 4] y + [0]            
                         [0 0]     [0]            
                      =  c_6(h#(h(y)),h#(y))      
        
         f(g(s(x),y)) =  [0 6] x + [7]            
                         [0 6]     [7]            
                      >= [0 6] x + [7]            
                         [0 6]     [7]            
                      =  f(g(x,s(y)))             
        
              f(s(x)) =  [0 5] x + [6]            
                         [0 5]     [6]            
                      >= [0 2] x + [6]            
                         [0 2]     [5]            
                      =  s(s(f(h(s(x)))))         
        
               g(x,x) =  [0 2] x + [0]            
                         [0 0]     [2]            
                      >= [0]                      
                         [2]                      
                      =  g(a(),b())               
        
         h(g(x,s(y))) =  [0 0] x + [0]            
                         [0 2]     [0]            
                      >= [0 0] x + [0]            
                         [0 2]     [0]            
                      =  h(g(s(x),y))             
        
            h(i(x,y)) =  [0 0] x + [0]            
                         [1 2]     [0]            
                      >= [0 0] x + [0]            
                         [1 2]     [0]            
                      =  i(i(c(),h(h(y))),x)      
        
           h(s(f(x))) =  [0 0] x + [0]            
                         [3 2]     [4]            
                      >= [0 0] x + [0]            
                         [3 2]     [3]            
                      =  h(f(x))                  
        
               i(x,x) =  [1 2] x + [0]            
                         [1 2]     [0]            
                      >= [0]                      
                         [0]                      
                      =  i(a(),b())               
        
***** Step 7.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 7.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
          
        The strictly oriented rules are moved into the weak component.
****** Step 7.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_2) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {2}
        
        Following symbols are considered usable:
          {f,g,h,i,f#,g#,h#,i#}
        TcT has computed the following interpretation:
            p(a) = [0]                      
                   [0]                      
            p(b) = [0]                      
                   [0]                      
            p(c) = [0]                      
                   [0]                      
            p(f) = [0]                      
                   [0]                      
            p(g) = [1 2] x1 + [1]           
                   [0 2]      [0]           
            p(h) = [0 3] x1 + [0]           
                   [1 0]      [0]           
            p(i) = [1 1] x1 + [0 0] x2 + [1]
                   [0 0]      [1 1]      [1]
            p(s) = [0]                      
                   [0]                      
           p(f#) = [0 0] x1 + [0]           
                   [0 1]      [2]           
           p(g#) = [0 0] x1 + [0]           
                   [1 0]      [1]           
           p(h#) = [0 2] x1 + [0]           
                   [0 0]      [3]           
           p(i#) = [0]                      
                   [0]                      
          p(c_1) = [2 0] x1 + [0]           
                   [0 0]      [2]           
          p(c_2) = [2 0] x1 + [2 0] x2 + [0]
                   [0 0]      [0 0]      [1]
          p(c_3) = [0]                      
                   [0]                      
          p(c_4) = [0]                      
                   [0]                      
          p(c_5) = [1 0] x1 + [0]           
                   [0 0]      [0]           
          p(c_6) = [1 0] x1 + [1 0] x2 + [0]
                   [0 0]      [0 1]      [0]
          p(c_7) = [2 0] x2 + [0]           
                   [0 0]      [0]           
          p(c_8) = [0]                      
                   [0]                      
        
        Following rules are strictly oriented:
        h#(i(x,y)) = [2 2] y + [2]      
                     [0 0]     [3]      
                   > [2 2] y + [0]      
                     [0 0]     [3]      
                   = c_6(h#(h(y)),h#(y))
        
        
        Following rules are (at-least) weakly oriented:
        f#(g(s(x),y)) =  [0]                      
                         [2]                      
                      >= [0]                      
                         [2]                      
                      =  c_1(f#(g(x,s(y))))       
        
             f#(s(x)) =  [0]                      
                         [2]                      
                      >= [0]                      
                         [1]                      
                      =  c_2(f#(h(s(x))),h#(s(x)))
        
        h#(g(x,s(y))) =  [0 4] x + [0]            
                         [0 0]     [3]            
                      >= [0]                      
                         [0]                      
                      =  c_5(h#(g(s(x),y)))       
        
          h#(s(f(x))) =  [0]                      
                         [3]                      
                      >= [0]                      
                         [0]                      
                      =  c_7(h#(f(x)),f#(x))      
        
         f(g(s(x),y)) =  [0]                      
                         [0]                      
                      >= [0]                      
                         [0]                      
                      =  f(g(x,s(y)))             
        
              f(s(x)) =  [0]                      
                         [0]                      
                      >= [0]                      
                         [0]                      
                      =  s(s(f(h(s(x)))))         
        
               g(x,x) =  [1 2] x + [1]            
                         [0 2]     [0]            
                      >= [1]                      
                         [0]                      
                      =  g(a(),b())               
        
         h(g(x,s(y))) =  [0 6] x + [0]            
                         [1 2]     [1]            
                      >= [0]                      
                         [1]                      
                      =  h(g(s(x),y))             
        
            h(i(x,y)) =  [0 0] x + [3 3] y + [3]  
                         [1 1]     [0 0]     [1]  
                      >= [0 0] x + [3 3] y + [3]  
                         [1 1]     [0 0]     [1]  
                      =  i(i(c(),h(h(y))),x)      
        
           h(s(f(x))) =  [0]                      
                         [0]                      
                      >= [0]                      
                         [0]                      
                      =  h(f(x))                  
        
               i(x,x) =  [1 1] x + [1]            
                         [1 1]     [1]            
                      >= [1]                      
                         [1]                      
                      =  i(a(),b())               
        
****** Step 7.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 7.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
            f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
            h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
            h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
            h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1
          
          2:W:f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
             -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_1 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1
          
          3:W:h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3
          
          4:W:h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
             -->_2 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_2 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4
             -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4
             -->_2 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3
          
          5:W:h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
             -->_1 h#(s(f(x))) -> c_7(h#(f(x)),f#(x)):5
             -->_1 h#(i(x,y)) -> c_6(h#(h(y)),h#(y)):4
             -->_1 h#(g(x,s(y))) -> c_5(h#(g(s(x),y))):3
             -->_2 f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x))):2
             -->_2 f#(g(s(x),y)) -> c_1(f#(g(x,s(y)))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: f#(g(s(x),y)) -> c_1(f#(g(x,s(y))))
          5: h#(s(f(x))) -> c_7(h#(f(x)),f#(x))
          4: h#(i(x,y)) -> c_6(h#(h(y)),h#(y))
          3: h#(g(x,s(y))) -> c_5(h#(g(s(x),y)))
          2: f#(s(x)) -> c_2(f#(h(s(x))),h#(s(x)))
****** Step 7.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(g(s(x),y)) -> f(g(x,s(y)))
            f(s(x)) -> s(s(f(h(s(x)))))
            g(x,x) -> g(a(),b())
            h(g(x,s(y))) -> h(g(s(x),y))
            h(i(x,y)) -> i(i(c(),h(h(y))),x)
            h(s(f(x))) -> h(f(x))
            i(x,x) -> i(a(),b())
        - Signature:
            {f/1,g/2,h/1,i/2,f#/1,g#/2,h#/1,i#/2} / {a/0,b/0,c/0,s/1,c_1/1,c_2/2,c_3/1,c_4/6,c_5/1,c_6/2,c_7/2,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,h#,i#} and constructors {a,b,c,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))