* Step 1: Sum WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) b(b(z,y),a()) -> z c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3} / {a/0,f/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,c} and constructors {a,f} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) b(b(z,y),a()) -> z c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3} / {a/0,f/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,c} and constructors {a,f} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. b(b(z,y),a()) -> z All above mentioned rules can be savely removed. * Step 3: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3} / {a/0,f/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,c} and constructors {a,f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs b#(y,z) -> c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) c#(f(z),f(c(a(),x,a())),y) -> c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) Weak DPs and mark the set of starting terms. * Step 4: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: b#(y,z) -> c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) c#(f(z),f(c(a(),x,a())),y) -> c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) - Weak TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3,b#/2,c#/3} / {a/0,f/1,c_1/2,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#} and constructors {a,f} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2,3} Following symbols are considered usable: {b,c,b#,c#} TcT has computed the following interpretation: p(a) = [1] [0] [0] p(b) = [0 0 0] [0] [0 0 0] x_1 + [2] [3 2 0] [2] p(c) = [0 0 0] [0 0 0] [0 0 0] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0 1 2] x_3 + [0] [3 0 0] [1 1 0] [0 0 0] [0] p(f) = [1 1 0] [0] [0 1 2] x_1 + [0] [0 0 0] [0] p(b#) = [2 0 0] [0 2 0] [1] [2 0 0] x_1 + [0 0 0] x_2 + [0] [0 0 0] [2 0 2] [1] p(c#) = [2 0 0] [0 1 0] [0 1 0] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0 2 0] x_3 + [1] [0 0 0] [1 1 2] [0 0 3] [0] p(c_1) = [2 0 0] [1 0 0] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0] [0 0 0] [0 0 0] [1] p(c_2) = [1 0 0] [1 0 0] [1 1 0] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0 0 0] x_3 + [1] [1 0 0] [0 1 0] [0 2 0] [0] Following rules are strictly oriented: b#(y,z) = [2 0 0] [0 2 0] [1] [2 0 0] y + [0 0 0] z + [0] [0 0 0] [2 0 2] [1] > [2 0 0] [0 2 0] [0] [0 0 0] y + [0 0 0] z + [0] [0 0 0] [0 0 0] [1] = c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) Following rules are (at-least) weakly oriented: c#(f(z),f(c(a(),x,a())),y) = [2 2 0] [0 1 0] [2 2 0] [6] [0 0 0] x + [0 2 0] y + [0 0 0] z + [1] [2 2 0] [0 0 3] [0 0 0] [6] >= [2 0 0] [0 1 0] [2 2 0] [6] [0 0 0] x + [0 0 0] y + [0 0 0] z + [1] [2 0 0] [0 0 0] [0 0 0] [6] = c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) b(y,z) = [0 0 0] [0] [0 0 0] y + [2] [3 2 0] [2] >= [0] [2] [0] = f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) = [0 0 0] [0 0 0] [0 0 0] [0] [0 0 0] x + [0 1 2] y + [0 0 0] z + [0] [2 2 0] [0 0 0] [3 3 0] [6] >= [0] [0] [6] = c(f(b(x,z)),c(z,y,a()),a()) * Step 5: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: c#(f(z),f(c(a(),x,a())),y) -> c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) - Weak DPs: b#(y,z) -> c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) - Weak TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3,b#/2,c#/3} / {a/0,f/1,c_1/2,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#} and constructors {a,f} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(c_1) = {1,2}, uargs(c_2) = {1,2,3} Following symbols are considered usable: {b,c,b#,c#} TcT has computed the following interpretation: p(a) = [0] [1] [1] p(b) = [0] [0] [0] p(c) = [0 0 0] [0 0 0] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0] [0 3 0] [2 0 0] [0] p(f) = [1 2 1] [0] [0 0 2] x_1 + [0] [0 0 1] [0] p(b#) = [3 0 0] [0 2 1] [2] [1 0 0] x_1 + [0 0 0] x_2 + [0] [0 0 0] [1 0 0] [0] p(c#) = [1 0 0] [0 1 0] [0 1 0] [0] [2 0 0] x_1 + [0 0 1] x_2 + [2 0 0] x_3 + [2] [2 0 0] [0 0 0] [0 0 1] [0] p(c_1) = [1 0 0] [1 0 1] [0] [0 0 0] x_1 + [0 0 0] x_2 + [0] [0 0 0] [0 0 0] [0] p(c_2) = [2 0 0] [1 1 0] [1 0 0] [0] [1 0 3] x_1 + [0 0 2] x_2 + [0 0 0] x_3 + [1] [0 0 0] [0 0 1] [0 0 0] [0] Following rules are strictly oriented: c#(f(z),f(c(a(),x,a())),y) = [4 0 0] [0 1 0] [1 2 1] [6] [2 0 0] x + [2 0 0] y + [2 4 2] z + [5] [0 0 0] [0 0 1] [2 4 2] [0] > [4 0 0] [0 1 0] [1 2 1] [5] [0 0 0] x + [0 0 0] y + [2 0 0] z + [5] [0 0 0] [0 0 0] [1 0 0] [0] = c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) Following rules are (at-least) weakly oriented: b#(y,z) = [3 0 0] [0 2 1] [2] [1 0 0] y + [0 0 0] z + [0] [0 0 0] [1 0 0] [0] >= [3 0 0] [0 2 1] [2] [0 0 0] y + [0 0 0] z + [0] [0 0 0] [0 0 0] [0] = c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) b(y,z) = [0] [0] [0] >= [0] [0] [0] = f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) = [0 0 0] [0 0 0] [0] [0 0 0] x + [0 0 0] z + [0] [4 0 0] [0 0 6] [6] >= [0] [0] [0] = c(f(b(x,z)),c(z,y,a()),a()) * Step 6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: b#(y,z) -> c_1(c#(c(y,z,z),a(),a()),c#(y,z,z)) c#(f(z),f(c(a(),x,a())),y) -> c_2(c#(f(b(x,z)),c(z,y,a()),a()),b#(x,z),c#(z,y,a())) - Weak TRS: b(y,z) -> f(c(c(y,z,z),a(),a())) c(f(z),f(c(a(),x,a())),y) -> c(f(b(x,z)),c(z,y,a()),a()) - Signature: {b/2,c/3,b#/2,c#/3} / {a/0,f/1,c_1/2,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#} and constructors {a,f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))