* Step 1: Sum WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y)))
            b(y,z) -> z
            f(c(a(),z,x)) -> b(a(),z)
        - Signature:
            {b/2,f/1} / {a/0,c/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,c}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y)))
            b(y,z) -> z
            f(c(a(),z,x)) -> b(a(),z)
        - Signature:
            {b/2,f/1} / {a/0,c/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,c}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          b(x,b(z,y)) -> f(b(f(f(z)),c(x,z,y)))
        All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            b(y,z) -> z
            f(c(a(),z,x)) -> b(a(),z)
        - Signature:
            {b/2,f/1} / {a/0,c/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,c}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          b#(y,z) -> c_1()
          f#(c(a(),z,x)) -> c_2(b#(a(),z))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            b#(y,z) -> c_1()
            f#(c(a(),z,x)) -> c_2(b#(a(),z))
        - Weak TRS:
            b(y,z) -> z
            f(c(a(),z,x)) -> b(a(),z)
        - Signature:
            {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          b#(y,z) -> c_1()
          f#(c(a(),z,x)) -> c_2(b#(a(),z))
* Step 5: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            b#(y,z) -> c_1()
            f#(c(a(),z,x)) -> c_2(b#(a(),z))
        - Signature:
            {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:b#(y,z) -> c_1()
             
          
          2:S:f#(c(a(),z,x)) -> c_2(b#(a(),z))
             -->_1 b#(y,z) -> c_1():1
          
        The dependency graph contains no loops, we remove all dependency pairs.
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {b/2,f/1,b#/2,f#/1} / {a/0,c/3,c_1/0,c_2/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,c}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(1))