0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 9 ms)
↳10 CpxRNTS
↳11 CompleteCoflocoProof (⇔, 104 ms)
↳12 BOUNDS(1, 1)
f(c(a, z, x)) → b(a, z)
b(x, b(z, y)) → f(b(f(f(z)), c(x, z, y)))
b(y, z) → z
b(y, z) → z
f(c(a, z, x)) → b(a, z)
b(y, z) → z [1]
f(c(a, z, x)) → b(a, z) [1]
b(y, z) → z [1]
f(c(a, z, x)) → b(a, z) [1]
b :: a → b:f → b:f f :: c → b:f c :: a → b:f → b → c a :: a |
f(v0) → null_f [0]
null_f, const, const1
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
a => 0
null_f => 0
const => 0
const1 => 0
b(z', z'') -{ 1 }→ z :|: z'' = z, z >= 0, y >= 0, z' = y
f(z') -{ 1 }→ b(0, z) :|: z >= 0, x >= 0, z' = 1 + 0 + z + x
f(z') -{ 0 }→ 0 :|: v0 >= 0, z' = v0
eq(start(V, V1),0,[b(V, V1, Out)],[V >= 0,V1 >= 0]). eq(start(V, V1),0,[f(V, Out)],[V >= 0]). eq(b(V, V1, Out),1,[],[Out = V2,V1 = V2,V2 >= 0,V3 >= 0,V = V3]). eq(f(V, Out),1,[b(0, V4, Ret)],[Out = Ret,V4 >= 0,V5 >= 0,V = 1 + V4 + V5]). eq(f(V, Out),0,[],[Out = 0,V6 >= 0,V = V6]). input_output_vars(b(V,V1,Out),[V,V1],[Out]). input_output_vars(f(V,Out),[V],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. non_recursive : [b/3]
1. non_recursive : [f/2]
2. non_recursive : [start/2]
#### Obtained direct recursion through partial evaluation
0. SCC is completely evaluated into other SCCs
1. SCC is partially evaluated into f/2
2. SCC is partially evaluated into start/2
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations f/2
* CE 4 is refined into CE [6]
* CE 5 is refined into CE [7]
### Cost equations --> "Loop" of f/2
* CEs [6] --> Loop 4
* CEs [7] --> Loop 5
### Ranking functions of CR f(V,Out)
#### Partial ranking functions of CR f(V,Out)
### Specialization of cost equations start/2
* CE 2 is refined into CE [8]
* CE 3 is refined into CE [9,10]
### Cost equations --> "Loop" of start/2
* CEs [8,9,10] --> Loop 6
### Ranking functions of CR start(V,V1)
#### Partial ranking functions of CR start(V,V1)
Computing Bounds
=====================================
#### Cost of chains of f(V,Out):
* Chain [5]: 0
with precondition: [Out=0,V>=0]
* Chain [4]: 2
with precondition: [Out>=0,V>=Out+1]
#### Cost of chains of start(V,V1):
* Chain [6]: 2
with precondition: [V>=0]
Closed-form bounds of start(V,V1):
-------------------------------------
* Chain [6] with precondition: [V>=0]
- Upper bound: 2
- Complexity: constant
### Maximum cost of start(V,V1): 2
Asymptotic class: constant
* Total analysis performed in 24 ms.