0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 14 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 601 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 197 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 1167 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 448 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 495 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 162 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^3)
minus(x, x) → 0
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(0, s(y)) → 0
f(x, 0, b) → x
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b)
minus(x, x) → 0 [1]
minus(s(x), s(y)) → minus(x, y) [1]
minus(0, x) → 0 [1]
minus(x, 0) → x [1]
div(s(x), s(y)) → s(div(minus(x, y), s(y))) [1]
div(0, s(y)) → 0 [1]
f(x, 0, b) → x [1]
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b) [1]
minus(x, x) → 0 [1]
minus(s(x), s(y)) → minus(x, y) [1]
minus(0, x) → 0 [1]
minus(x, 0) → x [1]
div(s(x), s(y)) → s(div(minus(x, y), s(y))) [1]
div(0, s(y)) → 0 [1]
f(x, 0, b) → x [1]
f(x, s(y), b) → div(f(x, minus(s(y), s(0)), b), b) [1]
minus :: 0:s → 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s div :: 0:s → 0:s → 0:s f :: 0:s → 0:s → 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
f
minus
div
div(v0, v1) → 0 [0]
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
div(z, z') -{ 1 }→ 0 :|: z' = 1 + y, y >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
div(z, z') -{ 2 }→ 1 + div(x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x
div(z, z') -{ 2 }→ 1 + div(minus(x', y'), 1 + (1 + y')) :|: z' = 1 + (1 + y'), x' >= 0, y' >= 0, z = 1 + (1 + x')
div(z, z') -{ 2 }→ 1 + div(0, 1 + x) :|: z' = 1 + x, x >= 0, z = 1 + x
div(z, z') -{ 2 }→ 1 + div(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0
f(z, z', z'') -{ 1 }→ x :|: b >= 0, z'' = b, x >= 0, z = x, z' = 0
f(z, z', z'') -{ 2 }→ div(f(x, minus(y, 0), b), b) :|: z' = 1 + y, b >= 0, z'' = b, x >= 0, y >= 0, z = x
f(z, z', z'') -{ 2 }→ div(f(x, 0, b), b) :|: b >= 0, z'' = b, x >= 0, z' = 1 + 0, z = x
minus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
minus(z, z') -{ 1 }→ minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
minus(z, z') -{ 1 }→ 0 :|: z' = x, x >= 0, z = x
minus(z, z') -{ 1 }→ 0 :|: z' = x, x >= 0, z = 0
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 2 }→ 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 2 }→ div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
{ minus } { div } { f } |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 2 }→ 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 2 }→ div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 2 }→ 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 2 }→ div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: ?, size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 2 }→ 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 2 }→ div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 1 + z' }→ 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 1 + z' }→ 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] div: runtime: ?, size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 1 + z' }→ 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 }→ 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 2 }→ 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] div: runtime: O(n2) [1 + 2·z + z·z'], size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 3 }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * 0, z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 + 2·s' + s'·z' + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * s', s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 3 }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 3·z }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * (z - 1), z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] div: runtime: O(n2) [1 + 2·z + z·z'], size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 3 }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * 0, z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 + 2·s' + s'·z' + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * s', s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 3 }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 3·z }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * (z - 1), z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] div: runtime: O(n2) [1 + 2·z + z·z'], size: O(n1) [z] f: runtime: ?, size: O(n1) [z] |
div(z, z') -{ 1 }→ 0 :|: z' - 1 >= 0, z = 0
div(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
div(z, z') -{ 3 }→ 1 + s1 :|: s1 >= 0, s1 <= 1 * 0, z' - 1 >= 0, z = 1 + (z' - 1)
div(z, z') -{ 2 + 2·s' + s'·z' + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * s', s' >= 0, s' <= 1 * (z - 2), z - 2 >= 0, z' - 2 >= 0
div(z, z') -{ 3 }→ 1 + s3 :|: s3 >= 0, s3 <= 1 * 0, z = 1 + 0, z' - 1 >= 0
div(z, z') -{ 3·z }→ 1 + s4 :|: s4 >= 0, s4 <= 1 * (z - 1), z - 1 >= 0, z' = 1 + 0
f(z, z', z'') -{ 1 }→ z :|: z'' >= 0, z >= 0, z' = 0
f(z, z', z'') -{ 3 }→ div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= 1 * (z' - 1), z'' >= 0, z >= 0, z' - 1 >= 0
f(z, z', z'') -{ 2 }→ div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0
minus(z, z') -{ 1 + z' }→ s :|: s >= 0, s <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = z'
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
minus: runtime: O(n1) [1 + z'], size: O(n1) [z] div: runtime: O(n2) [1 + 2·z + z·z'], size: O(n1) [z] f: runtime: O(n3) [1 + 2·z·z' + z·z'·z'' + 4·z'], size: O(n1) [z] |