* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a(0(),x) -> c(c(x)) c(c(x)) -> b(c(b(c(x)))) c(c(b(c(x)))) -> b(a(0(),c(x))) - Signature: {a/2,c/1} / {0/0,b/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a(0(),x) -> c(c(x)) c(c(x)) -> b(c(b(c(x)))) c(c(b(c(x)))) -> b(a(0(),c(x))) - Signature: {a/2,c/1} / {0/0,b/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. 0_0() -> 2 a_0(2,2) -> 1 b_0(2) -> 2 b_2(4) -> 1 b_2(6) -> 5 c_0(2) -> 1 c_1(2) -> 3 c_1(3) -> 1 c_2(2) -> 6 c_2(5) -> 4 * Step 3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(0(),x) -> c(c(x)) c(c(x)) -> b(c(b(c(x)))) c(c(b(c(x)))) -> b(a(0(),c(x))) - Signature: {a/2,c/1} / {0/0,b/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))