* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a(0(),x) -> c(c(x))
            c(c(x)) -> b(c(b(c(x))))
            c(c(b(c(x)))) -> b(a(0(),c(x)))
        - Signature:
            {a/2,c/1} / {0/0,b/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a(0(),x) -> c(c(x))
            c(c(x)) -> b(c(b(c(x))))
            c(c(b(c(x)))) -> b(a(0(),c(x)))
        - Signature:
            {a/2,c/1} / {0/0,b/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 2
          a_0(2,2) -> 1
          b_0(2) -> 2
          b_2(4) -> 1
          b_2(6) -> 5
          c_0(2) -> 1
          c_1(2) -> 3
          c_1(3) -> 1
          c_2(2) -> 6
          c_2(5) -> 4
* Step 3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a(0(),x) -> c(c(x))
            c(c(x)) -> b(c(b(c(x))))
            c(c(b(c(x)))) -> b(a(0(),c(x)))
        - Signature:
            {a/2,c/1} / {0/0,b/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a,c} and constructors {0,b}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))