* Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) c(c(c(y))) -> c(c(a(y,0()))) - Signature: {c/1} / {0/0,a/2} - Obligation: innermost runtime complexity wrt. defined symbols {c} and constructors {0,a} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: InnermostRuleRemoval WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) c(c(c(y))) -> c(c(a(y,0()))) - Signature: {c/1} / {0/0,a/2} - Obligation: innermost runtime complexity wrt. defined symbols {c} and constructors {0,a} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. c(c(c(y))) -> c(c(a(y,0()))) All above mentioned rules can be savely removed. * Step 3: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1} / {0/0,a/2} - Obligation: innermost runtime complexity wrt. defined symbols {c} and constructors {0,a} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs c#(y) -> c_1() c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) Weak DPs and mark the set of starting terms. * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: c#(y) -> c_1() c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) - Weak TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1,c#/1} / {0/0,a/2,c_1/0,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {c#} and constructors {0,a} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: c#(y) -> c_1() 2: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) - Weak DPs: c#(y) -> c_1() - Weak TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1,c#/1} / {0/0,a/2,c_1/0,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {c#} and constructors {0,a} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) -->_3 c#(y) -> c_1():2 -->_2 c#(y) -> c_1():2 -->_1 c#(y) -> c_1():2 -->_2 c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())):1 -->_1 c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())):1 2:W:c#(y) -> c_1() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: c#(y) -> c_1() * Step 6: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) - Weak TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1,c#/1} / {0/0,a/2,c_1/0,c_2/3} - Obligation: innermost runtime complexity wrt. defined symbols {c#} and constructors {0,a} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())) -->_2 c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())):1 -->_1 c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0())),c#(0())):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0()))) * Step 7: MI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0()))) - Weak TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1,c#/1} / {0/0,a/2,c_1/0,c_2/2} - Obligation: innermost runtime complexity wrt. defined symbols {c#} and constructors {0,a} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 0))), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 0))): The following argument positions are considered usable: uargs(c_2) = {1,2} Following symbols are considered usable: {c,c#} TcT has computed the following interpretation: p(0) = [4] p(a) = [14] p(c) = [1] x_1 + [0] p(c#) = [2] x_1 + [0] p(c_1) = [2] p(c_2) = [2] x_1 + [1] x_2 + [3] Following rules are strictly oriented: c#(a(a(0(),x),y)) = [28] > [27] = c_2(c#(c(c(0()))),c#(c(0()))) Following rules are (at-least) weakly oriented: c(y) = [1] y + [0] >= [1] y + [0] = y c(a(a(0(),x),y)) = [14] >= [14] = a(c(c(c(0()))),y) * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: c#(a(a(0(),x),y)) -> c_2(c#(c(c(0()))),c#(c(0()))) - Weak TRS: c(y) -> y c(a(a(0(),x),y)) -> a(c(c(c(0()))),y) - Signature: {c/1,c#/1} / {0/0,a/2,c_1/0,c_2/2} - Obligation: innermost runtime complexity wrt. defined symbols {c#} and constructors {0,a} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))