(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of minus: p, le
The following defined symbols can occur below the 0th argument of le: p, le
The following defined symbols can occur below the 0th argument of if: le, p
The following defined symbols can occur below the 1th argument of if: p, le
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
p(p(s(x))) → p(x)
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
p(0) → s(s(0))
if(false, x, y) → s(minus(p(x), y))
minus(x, y) → if(le(x, y), x, y)
le(s(x), s(y)) → le(x, y)
p(s(x)) → x
le(s(x), 0) → false
le(p(s(x)), x) → le(x, x)
le(0, y) → true
if(true, x, y) → 0
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → s(s(0))
p(s(z0)) → z0
if(false, z0, z1) → s(minus(p(z0), z1))
if(true, z0, z1) → 0
minus(z0, z1) → if(le(z0, z1), z0, z1)
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(p(s(z0)), z0) → le(z0, z0)
le(0, z0) → true
Tuples:
P(0) → c
P(s(z0)) → c1
IF(false, z0, z1) → c2(MINUS(p(z0), z1), P(z0))
IF(true, z0, z1) → c3
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
LE(s(z0), 0) → c6
LE(p(s(z0)), z0) → c7(LE(z0, z0))
LE(0, z0) → c8
S tuples:
P(0) → c
P(s(z0)) → c1
IF(false, z0, z1) → c2(MINUS(p(z0), z1), P(z0))
IF(true, z0, z1) → c3
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
LE(s(z0), 0) → c6
LE(p(s(z0)), z0) → c7(LE(z0, z0))
LE(0, z0) → c8
K tuples:none
Defined Rule Symbols:
p, if, minus, le
Defined Pair Symbols:
P, IF, MINUS, LE
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
LE(p(s(z0)), z0) → c7(LE(z0, z0))
Removed 5 trailing nodes:
P(s(z0)) → c1
LE(0, z0) → c8
P(0) → c
LE(s(z0), 0) → c6
IF(true, z0, z1) → c3
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → s(s(0))
p(s(z0)) → z0
if(false, z0, z1) → s(minus(p(z0), z1))
if(true, z0, z1) → 0
minus(z0, z1) → if(le(z0, z1), z0, z1)
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(p(s(z0)), z0) → le(z0, z0)
le(0, z0) → true
Tuples:
IF(false, z0, z1) → c2(MINUS(p(z0), z1), P(z0))
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
S tuples:
IF(false, z0, z1) → c2(MINUS(p(z0), z1), P(z0))
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
K tuples:none
Defined Rule Symbols:
p, if, minus, le
Defined Pair Symbols:
IF, MINUS, LE
Compound Symbols:
c2, c4, c5
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
p(0) → s(s(0))
p(s(z0)) → z0
if(false, z0, z1) → s(minus(p(z0), z1))
if(true, z0, z1) → 0
minus(z0, z1) → if(le(z0, z1), z0, z1)
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(p(s(z0)), z0) → le(z0, z0)
le(0, z0) → true
Tuples:
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
S tuples:
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
K tuples:none
Defined Rule Symbols:
p, if, minus, le
Defined Pair Symbols:
MINUS, LE, IF
Compound Symbols:
c4, c5, c2
(9) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
if(false, z0, z1) → s(minus(p(z0), z1))
if(true, z0, z1) → 0
minus(z0, z1) → if(le(z0, z1), z0, z1)
le(p(s(z0)), z0) → le(z0, z0)
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
S tuples:
MINUS(z0, z1) → c4(IF(le(z0, z1), z0, z1), LE(z0, z1))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
MINUS, LE, IF
Compound Symbols:
c4, c5, c2
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
MINUS(
z0,
z1) →
c4(
IF(
le(
z0,
z1),
z0,
z1),
LE(
z0,
z1)) by
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0), LE(s(z0), 0))
MINUS(0, z0) → c4(IF(true, 0, z0), LE(0, z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0), LE(s(z0), 0))
MINUS(0, z0) → c4(IF(true, 0, z0), LE(0, z0))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0), LE(s(z0), 0))
MINUS(0, z0) → c4(IF(true, 0, z0), LE(0, z0))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
LE, IF, MINUS
Compound Symbols:
c5, c2, c4
(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
MINUS(0, z0) → c4(IF(true, 0, z0), LE(0, z0))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0), LE(s(z0), 0))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0), LE(s(z0), 0))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
LE, IF, MINUS
Compound Symbols:
c5, c2, c4
(15) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
IF(false, z0, z1) → c2(MINUS(p(z0), z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
LE, IF, MINUS
Compound Symbols:
c5, c2, c4, c4
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
false,
z0,
z1) →
c2(
MINUS(
p(
z0),
z1)) by
IF(false, 0, x1) → c2(MINUS(s(s(0)), x1))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, 0, x1) → c2(MINUS(s(s(0)), x1))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, 0, x1) → c2(MINUS(s(s(0)), x1))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(19) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
IF(false, 0, x1) → c2(MINUS(s(s(0)), x1))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
p(0) → s(s(0))
p(s(z0)) → z0
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
K tuples:none
Defined Rule Symbols:
le, p
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(21) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
p(0) → s(s(0))
p(s(z0)) → z0
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
K tuples:none
Defined Rule Symbols:
le
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
We considered the (Usable) Rules:none
And the Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(IF(x1, x2, x3)) = x2
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(false) = 0
POL(le(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
K tuples:
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
Defined Rule Symbols:
le
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(25) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
K tuples:
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
Defined Rule Symbols:
le
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c5(LE(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(IF(x1, x2, x3)) = [2]x2 + [2]x2·x3 + x22
POL(LE(x1, x2)) = [2]x2
POL(MINUS(x1, x2)) = [2] + [2]x1 + [2]x2 + [2]x1·x2 + x12
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(false) = [1]
POL(le(x1, x2)) = [1] + x12
POL(s(x1)) = [2] + x1
POL(true) = [1]
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(s(z0), s(z1)) → le(z0, z1)
le(s(z0), 0) → false
le(0, z0) → true
Tuples:
LE(s(z0), s(z1)) → c5(LE(z0, z1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
S tuples:none
K tuples:
IF(false, s(z0), x1) → c2(MINUS(z0, x1))
MINUS(s(z0), s(z1)) → c4(IF(le(z0, z1), s(z0), s(z1)), LE(s(z0), s(z1)))
MINUS(s(z0), 0) → c4(IF(false, s(z0), 0))
LE(s(z0), s(z1)) → c5(LE(z0, z1))
Defined Rule Symbols:
le
Defined Pair Symbols:
LE, MINUS, IF
Compound Symbols:
c5, c4, c4, c2
(29) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(30) BOUNDS(1, 1)