* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2} / {a/0,b/0,c/0,d/0,e/0,h/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,g} and constructors {a,b,c,d,e,h}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2} / {a/0,b/0,c/0,d/0,e/0,h/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,g} and constructors {a,b,c,d,e,h}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
f(x){x -> h(x,y)} =
f(h(x,y)) ->^+ g(h(y,f(x)),h(x,f(y)))
= C[f(x) = f(x){}]
** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2} / {a/0,b/0,c/0,d/0,e/0,h/2}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,g} and constructors {a,b,c,d,e,h}
+ Applied Processor:
DependencyPairs {dpKind_ = DT}
+ Details:
We add the following dependency tuples:
Strict DPs
f#(a()) -> c_1()
f#(c()) -> c_2()
f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
g#(x,x) -> c_5()
Weak DPs
and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(a()) -> c_1()
f#(c()) -> c_2()
f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
g#(x,x) -> c_5()
- Weak TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
+ Details:
We estimate the number of application of
{1,2,5}
by application of
Pre({1,2,5}) = {3,4}.
Here rules are labelled as follows:
1: f#(a()) -> c_1()
2: f#(c()) -> c_2()
3: f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
4: f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
5: g#(x,x) -> c_5()
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
- Weak DPs:
f#(a()) -> c_1()
f#(c()) -> c_2()
g#(x,x) -> c_5()
- Weak TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
-->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_1 g#(x,x) -> c_5():5
-->_3 f#(c()) -> c_2():4
-->_2 f#(c()) -> c_2():4
-->_3 f#(a()) -> c_1():3
-->_2 f#(a()) -> c_1():3
-->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
-->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
-->_1 g#(x,x) -> c_5():5
-->_3 f#(c()) -> c_2():4
-->_2 f#(c()) -> c_2():4
-->_3 f#(a()) -> c_1():3
-->_2 f#(a()) -> c_1():3
-->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
-->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
3:W:f#(a()) -> c_1()
4:W:f#(c()) -> c_2()
5:W:g#(x,x) -> c_5()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: f#(a()) -> c_1()
4: f#(c()) -> c_2()
5: g#(x,x) -> c_5()
** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
- Weak TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/3,c_4/3,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
SimplifyRHS
+ Details:
Consider the dependency graph
1:S:f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y))
-->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
-->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
2:S:f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y))
-->_3 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_2 f#(h(x,y)) -> c_4(g#(h(y,f(x)),h(x,f(y))),f#(x),f#(y)):2
-->_3 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
-->_2 f#(g(x,y)) -> c_3(g#(f(x),f(y)),f#(x),f#(y)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
** Step 1.b:5: UsableRules WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
- Weak TRS:
f(a()) -> b()
f(c()) -> d()
f(g(x,y)) -> g(f(x),f(y))
f(h(x,y)) -> g(h(y,f(x)),h(x,f(y)))
g(x,x) -> h(e(),x)
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
UsableRules
+ Details:
We replace rewrite rules by usable rules:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
** Step 1.b:6: PredecessorEstimationCP WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
+ Details:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
1: f#(g(x,y)) -> c_3(f#(x),f#(y))
2: f#(h(x,y)) -> c_4(f#(x),f#(y))
The strictly oriented rules are moved into the weak component.
*** Step 1.b:6.a:1: NaturalMI WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict DPs:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
+ Details:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_3) = {1,2},
uargs(c_4) = {1,2}
Following symbols are considered usable:
{f#,g#}
TcT has computed the following interpretation:
p(a) = [1]
p(b) = [2]
p(c) = [2]
p(d) = [0]
p(e) = [2]
p(f) = [4] x1 + [1]
p(g) = [2] x1 + [3] x2 + [2]
p(h) = [1] x1 + [1] x2 + [2]
p(f#) = [8] x1 + [3]
p(g#) = [4] x1 + [1]
p(c_1) = [0]
p(c_2) = [1]
p(c_3) = [2] x1 + [3] x2 + [1]
p(c_4) = [1] x1 + [1] x2 + [3]
p(c_5) = [1]
Following rules are strictly oriented:
f#(g(x,y)) = [16] x + [24] y + [19]
> [16] x + [24] y + [16]
= c_3(f#(x),f#(y))
f#(h(x,y)) = [8] x + [8] y + [19]
> [8] x + [8] y + [9]
= c_4(f#(x),f#(y))
Following rules are (at-least) weakly oriented:
*** Step 1.b:6.a:2: Assumption WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
+ Details:
()
*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
+ Considered Problem:
- Weak DPs:
f#(g(x,y)) -> c_3(f#(x),f#(y))
f#(h(x,y)) -> c_4(f#(x),f#(y))
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
RemoveWeakSuffixes
+ Details:
Consider the dependency graph
1:W:f#(g(x,y)) -> c_3(f#(x),f#(y))
-->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
-->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
-->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
-->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
2:W:f#(h(x,y)) -> c_4(f#(x),f#(y))
-->_2 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
-->_1 f#(h(x,y)) -> c_4(f#(x),f#(y)):2
-->_2 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
-->_1 f#(g(x,y)) -> c_3(f#(x),f#(y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: f#(g(x,y)) -> c_3(f#(x),f#(y))
2: f#(h(x,y)) -> c_4(f#(x),f#(y))
*** Step 1.b:6.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Signature:
{f/1,g/2,f#/1,g#/2} / {a/0,b/0,c/0,d/0,e/0,h/2,c_1/0,c_2/0,c_3/2,c_4/2,c_5/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {a,b,c,d,e,h}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))