* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(a()) -> g(h(a()))
            h(g(x)) -> g(h(f(x)))
            k(x,h(x),a()) -> h(x)
            k(f(x),y,x) -> f(x)
        - Signature:
            {f/1,h/1,k/3} / {a/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,h,k} and constructors {a,g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(a()) -> g(h(a()))
            h(g(x)) -> g(h(f(x)))
            k(x,h(x),a()) -> h(x)
            k(f(x),y,x) -> f(x)
        - Signature:
            {f/1,h/1,k/3} / {a/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,h,k} and constructors {a,g}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          a_0() -> 2
          a_1() -> 4
          f_0(2) -> 1
          f_1(2) -> 4
          f_2(3) -> 6
          g_0(2) -> 2
          g_1(3) -> 1
          g_1(3) -> 4
          g_2(5) -> 3
          h_0(2) -> 1
          h_1(4) -> 3
          h_2(6) -> 5
          k_0(2,2,2) -> 1
* Step 3: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(a()) -> g(h(a()))
            h(g(x)) -> g(h(f(x)))
            k(x,h(x),a()) -> h(x)
            k(f(x),y,x) -> f(x)
        - Signature:
            {f/1,h/1,k/3} / {a/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,h,k} and constructors {a,g}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))