* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
            f(g(f(x))) -> f(h(s(0()),x))
            f(g(h(x,y))) -> f(h(s(x),y))
            f(h(x,h(y,z))) -> f(h(+(x,y),z))
        - Signature:
            {+/2,f/1} / {0/0,g/1,h/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,f} and constructors {0,g,h,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
            f(g(f(x))) -> f(h(s(0()),x))
            f(g(h(x,y))) -> f(h(s(x),y))
            f(h(x,h(y,z))) -> f(h(+(x,y),z))
        - Signature:
            {+/2,f/1} / {0/0,g/1,h/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,f} and constructors {0,g,h,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          +(x,y){y -> s(y)} =
            +(x,s(y)) ->^+ s(+(x,y))
              = C[+(x,y) = +(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
            f(g(f(x))) -> f(h(s(0()),x))
            f(g(h(x,y))) -> f(h(s(x),y))
            f(h(x,h(y,z))) -> f(h(+(x,y),z))
        - Signature:
            {+/2,f/1} / {0/0,g/1,h/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,f} and constructors {0,g,h,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,0()) -> c_2()
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(0(),y) -> c_4()
          +#(s(x),y) -> c_5(+#(x,y))
          f#(g(f(x))) -> c_6(f#(h(s(0()),x)))
          f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,0()) -> c_2()
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(0(),y) -> c_4()
            +#(s(x),y) -> c_5(+#(x,y))
            f#(g(f(x))) -> c_6(f#(h(s(0()),x)))
            f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
            f(g(f(x))) -> f(h(s(0()),x))
            f(g(h(x,y))) -> f(h(s(x),y))
            f(h(x,h(y,z))) -> f(h(+(x,y),z))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(x,s(y)) -> s(+(x,y))
          +(0(),y) -> y
          +(s(x),y) -> s(+(x,y))
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,0()) -> c_2()
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(0(),y) -> c_4()
          +#(s(x),y) -> c_5(+#(x,y))
          f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,0()) -> c_2()
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(0(),y) -> c_4()
            +#(s(x),y) -> c_5(+#(x,y))
            f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4}
        by application of
          Pre({2,4}) = {1,3,5,7}.
        Here rules are labelled as follows:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          2: +#(x,0()) -> c_2()
          3: +#(x,s(y)) -> c_3(+#(x,y))
          4: +#(0(),y) -> c_4()
          5: +#(s(x),y) -> c_5(+#(x,y))
          6: f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
          7: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
            f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak DPs:
            +#(x,0()) -> c_2()
            +#(0(),y) -> c_4()
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_2 +#(0(),y) -> c_4():7
             -->_1 +#(0(),y) -> c_4():7
             -->_2 +#(x,0()) -> c_2():6
             -->_1 +#(x,0()) -> c_2():6
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(x,s(y)) -> c_3(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(0(),y) -> c_4():7
             -->_1 +#(x,0()) -> c_2():6
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(s(x),y) -> c_5(+#(x,y))
             -->_1 +#(0(),y) -> c_4():7
             -->_1 +#(x,0()) -> c_2():6
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
          
          5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_2 +#(0(),y) -> c_4():7
             -->_2 +#(x,0()) -> c_2():6
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          6:W:+#(x,0()) -> c_2()
             
          
          7:W:+#(0(),y) -> c_4()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: +#(x,0()) -> c_2()
          7: +#(0(),y) -> c_4()
** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
            f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
           -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        2:S:+#(x,s(y)) -> c_3(+#(x,y))
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        3:S:+#(s(x),y) -> c_5(+#(x,y))
           -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        4:S:f#(g(h(x,y))) -> c_7(f#(h(s(x),y)))
           -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
        
        5:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
           -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):5
           -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
           -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
           -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(4,f#(g(h(x,y))) -> c_7(f#(h(s(x),y))))]
** Step 1.b:6: Decompose WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(x,s(y)) -> c_3(+#(x,y))
              +#(s(x),y) -> c_5(+#(x,y))
          - Weak DPs:
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(x,s(y)) -> s(+(x,y))
              +(0(),y) -> y
              +(s(x),y) -> s(+(x,y))
          - Signature:
              {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
        
        Problem (S)
          - Strict DPs:
              f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          - Weak DPs:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(x,s(y)) -> c_3(+#(x,y))
              +#(s(x),y) -> c_5(+#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(x,s(y)) -> s(+(x,y))
              +(0(),y) -> y
              +(s(x),y) -> s(+(x,y))
          - Signature:
              {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
*** Step 1.b:6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: +#(x,s(y)) -> c_3(+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_3) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {+,+#,f#}
        TcT has computed the following interpretation:
            p(+) = [1 0 0]      [1 0 1]      [1]
                   [0 1 0] x1 + [0 1 0] x2 + [0]
                   [0 0 1]      [0 1 1]      [0]
            p(0) = [0]                          
                   [1]                          
                   [0]                          
            p(f) = [0]                          
                   [0]                          
                   [0]                          
            p(g) = [0]                          
                   [0]                          
                   [0]                          
            p(h) = [0 0 0]      [0 1 0]      [1]
                   [0 1 0] x1 + [0 1 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [0]
            p(s) = [0 0 0]      [0]             
                   [0 1 0] x1 + [1]             
                   [0 0 0]      [1]             
           p(+#) = [0 1 0]      [0]             
                   [0 0 0] x2 + [1]             
                   [1 0 0]      [1]             
           p(f#) = [1 1 0]      [0]             
                   [0 0 0] x1 + [1]             
                   [0 0 0]      [1]             
          p(c_1) = [1 0 0]      [1 0 0]      [0]
                   [0 0 0] x1 + [0 0 0] x2 + [0]
                   [0 0 1]      [0 0 0]      [1]
          p(c_2) = [0]                          
                   [0]                          
                   [0]                          
          p(c_3) = [1 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 0]      [0]             
          p(c_4) = [0]                          
                   [0]                          
                   [0]                          
          p(c_5) = [1 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 1]      [0]             
          p(c_6) = [0]                          
                   [0]                          
                   [0]                          
          p(c_7) = [0]                          
                   [0]                          
                   [0]                          
          p(c_8) = [1 0 0]      [1 0 0]      [0]
                   [0 0 1] x1 + [0 0 0] x2 + [0]
                   [0 1 0]      [0 0 0]      [0]
        
        Following rules are strictly oriented:
        +#(x,s(y)) = [0 1 0]     [1]
                     [0 0 0] y + [1]
                     [0 0 0]     [1]
                   > [0 1 0]     [0]
                     [0 0 0] y + [0]
                     [0 0 0]     [0]
                   = c_3(+#(x,y))   
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  [0 1 0]     [0 1 0]     [0]            
                           [0 0 0] y + [0 0 0] z + [1]            
                           [1 0 0]     [1 0 1]     [2]            
                        >= [0 1 0]     [0 1 0]     [0]            
                           [0 0 0] y + [0 0 0] z + [0]            
                           [0 0 0]     [1 0 0]     [2]            
                        =  c_1(+#(+(x,y),z),+#(x,y))              
        
             +#(s(x),y) =  [0 1 0]     [0]                        
                           [0 0 0] y + [1]                        
                           [1 0 0]     [1]                        
                        >= [0 1 0]     [0]                        
                           [0 0 0] y + [0]                        
                           [1 0 0]     [1]                        
                        =  c_5(+#(x,y))                           
        
        f#(h(x,h(y,z))) =  [0 1 0]     [0 2 0]     [0 2 0]     [1]
                           [0 0 0] x + [0 0 0] y + [0 0 0] z + [1]
                           [0 0 0]     [0 0 0]     [0 0 0]     [1]
                        >= [0 1 0]     [0 2 0]     [0 2 0]     [1]
                           [0 0 0] x + [0 0 0] y + [0 0 0] z + [1]
                           [0 0 0]     [0 0 0]     [0 0 0]     [1]
                        =  c_8(f#(h(+(x,y),z)),+#(x,y))           
        
            +(x,+(y,z)) =  [1 0 0]     [1 0 1]     [1 1 2]     [2]
                           [0 1 0] x + [0 1 0] y + [0 1 0] z + [0]
                           [0 0 1]     [0 1 1]     [0 2 1]     [0]
                        >= [1 0 0]     [1 0 1]     [1 0 1]     [2]
                           [0 1 0] x + [0 1 0] y + [0 1 0] z + [0]
                           [0 0 1]     [0 1 1]     [0 1 1]     [0]
                        =  +(+(x,y),z)                            
        
               +(x,0()) =  [1 0 0]     [1]                        
                           [0 1 0] x + [1]                        
                           [0 0 1]     [1]                        
                        >= [1 0 0]     [0]                        
                           [0 1 0] x + [0]                        
                           [0 0 1]     [0]                        
                        =  x                                      
        
              +(x,s(y)) =  [1 0 0]     [0 0 0]     [2]            
                           [0 1 0] x + [0 1 0] y + [1]            
                           [0 0 1]     [0 1 0]     [2]            
                        >= [0 0 0]     [0 0 0]     [0]            
                           [0 1 0] x + [0 1 0] y + [1]            
                           [0 0 0]     [0 0 0]     [1]            
                        =  s(+(x,y))                              
        
               +(0(),y) =  [1 0 1]     [1]                        
                           [0 1 0] y + [1]                        
                           [0 1 1]     [0]                        
                        >= [1 0 0]     [0]                        
                           [0 1 0] y + [0]                        
                           [0 0 1]     [0]                        
                        =  y                                      
        
              +(s(x),y) =  [0 0 0]     [1 0 1]     [1]            
                           [0 1 0] x + [0 1 0] y + [1]            
                           [0 0 0]     [0 1 1]     [1]            
                        >= [0 0 0]     [0 0 0]     [0]            
                           [0 1 0] x + [0 1 0] y + [1]            
                           [0 0 0]     [0 0 0]     [1]            
                        =  s(+(x,y))                              
        
**** Step 1.b:6.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_3) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1,2}
        
        Following symbols are considered usable:
          {+,+#,f#}
        TcT has computed the following interpretation:
            p(+) = [1 0 0]      [1 0 0]      [0]
                   [0 1 0] x1 + [0 1 0] x2 + [0]
                   [0 0 1]      [0 0 1]      [1]
            p(0) = [0]                          
                   [0]                          
                   [1]                          
            p(f) = [0]                          
                   [0]                          
                   [0]                          
            p(g) = [0]                          
                   [0]                          
                   [0]                          
            p(h) = [0 0 0]      [0 0 0]      [1]
                   [0 0 0] x1 + [0 0 1] x2 + [0]
                   [0 0 1]      [0 0 1]      [0]
            p(s) = [0 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 1]      [0]             
           p(+#) = [0 0 1]      [0]             
                   [0 0 0] x2 + [0]             
                   [0 1 0]      [0]             
           p(f#) = [0 1 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [1 0 0]      [0]             
          p(c_1) = [1 0 0]      [1 0 0]      [0]
                   [0 0 0] x1 + [0 0 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [0]
          p(c_2) = [0]                          
                   [0]                          
                   [0]                          
          p(c_3) = [1 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 0]      [0]             
          p(c_4) = [0]                          
                   [0]                          
                   [0]                          
          p(c_5) = [1 0 0]      [0]             
                   [0 0 0] x1 + [0]             
                   [0 0 1]      [0]             
          p(c_6) = [0]                          
                   [0]                          
                   [0]                          
          p(c_7) = [0]                          
                   [0]                          
                   [0]                          
          p(c_8) = [1 0 0]      [1 0 0]      [0]
                   [0 0 0] x1 + [0 0 0] x2 + [0]
                   [0 0 0]      [0 0 0]      [0]
        
        Following rules are strictly oriented:
        +#(x,+(y,z)) = [0 0 1]     [0 0 1]     [1]
                       [0 0 0] y + [0 0 0] z + [0]
                       [0 1 0]     [0 1 0]     [0]
                     > [0 0 1]     [0 0 1]     [0]
                       [0 0 0] y + [0 0 0] z + [0]
                       [0 0 0]     [0 0 0]     [0]
                     = c_1(+#(+(x,y),z),+#(x,y))  
        
        
        Following rules are (at-least) weakly oriented:
             +#(x,s(y)) =  [0 0 1]     [0]                        
                           [0 0 0] y + [0]                        
                           [0 0 0]     [0]                        
                        >= [0 0 1]     [0]                        
                           [0 0 0] y + [0]                        
                           [0 0 0]     [0]                        
                        =  c_3(+#(x,y))                           
        
             +#(s(x),y) =  [0 0 1]     [0]                        
                           [0 0 0] y + [0]                        
                           [0 1 0]     [0]                        
                        >= [0 0 1]     [0]                        
                           [0 0 0] y + [0]                        
                           [0 1 0]     [0]                        
                        =  c_5(+#(x,y))                           
        
        f#(h(x,h(y,z))) =  [0 0 1]     [0 0 1]     [0]            
                           [0 0 0] y + [0 0 0] z + [0]            
                           [0 0 0]     [0 0 0]     [1]            
                        >= [0 0 1]     [0 0 1]     [0]            
                           [0 0 0] y + [0 0 0] z + [0]            
                           [0 0 0]     [0 0 0]     [0]            
                        =  c_8(f#(h(+(x,y),z)),+#(x,y))           
        
            +(x,+(y,z)) =  [1 0 0]     [1 0 0]     [1 0 0]     [0]
                           [0 1 0] x + [0 1 0] y + [0 1 0] z + [0]
                           [0 0 1]     [0 0 1]     [0 0 1]     [2]
                        >= [1 0 0]     [1 0 0]     [1 0 0]     [0]
                           [0 1 0] x + [0 1 0] y + [0 1 0] z + [0]
                           [0 0 1]     [0 0 1]     [0 0 1]     [2]
                        =  +(+(x,y),z)                            
        
               +(x,0()) =  [1 0 0]     [0]                        
                           [0 1 0] x + [0]                        
                           [0 0 1]     [2]                        
                        >= [1 0 0]     [0]                        
                           [0 1 0] x + [0]                        
                           [0 0 1]     [0]                        
                        =  x                                      
        
              +(x,s(y)) =  [1 0 0]     [0 0 0]     [0]            
                           [0 1 0] x + [0 0 0] y + [0]            
                           [0 0 1]     [0 0 1]     [1]            
                        >= [0 0 0]     [0 0 0]     [0]            
                           [0 0 0] x + [0 0 0] y + [0]            
                           [0 0 1]     [0 0 1]     [1]            
                        =  s(+(x,y))                              
        
               +(0(),y) =  [1 0 0]     [0]                        
                           [0 1 0] y + [0]                        
                           [0 0 1]     [2]                        
                        >= [1 0 0]     [0]                        
                           [0 1 0] y + [0]                        
                           [0 0 1]     [0]                        
                        =  y                                      
        
              +(s(x),y) =  [0 0 0]     [1 0 0]     [0]            
                           [0 0 0] x + [0 1 0] y + [0]            
                           [0 0 1]     [0 0 1]     [1]            
                        >= [0 0 0]     [0 0 0]     [0]            
                           [0 0 0] x + [0 0 0] y + [0]            
                           [0 0 1]     [0 0 1]     [1]            
                        =  s(+(x,y))                              
        
***** Step 1.b:6.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.b:1.b:1: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        and a lower component
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,s(y)) -> c_3(+#(x,y))
          +#(s(x),y) -> c_5(+#(x,y))
        Further, following extension rules are added to the lower component.
          f#(h(x,h(y,z))) -> +#(x,y)
          f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
****** Step 1.b:6.a:1.b:1.b:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:6.a:1.b:1.b:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {+,+#,f#}
        TcT has computed the following interpretation:
            p(+) = [1] x1 + [1] x2 + [1]
            p(0) = [1]                  
            p(f) = [1] x1 + [0]         
            p(g) = [1]                  
            p(h) = [1] x1 + [1] x2 + [3]
            p(s) = [0]                  
           p(+#) = [0]                  
           p(f#) = [2] x1 + [0]         
          p(c_1) = [2]                  
          p(c_2) = [8]                  
          p(c_3) = [4] x1 + [1]         
          p(c_4) = [4]                  
          p(c_5) = [2] x1 + [2]         
          p(c_6) = [1] x1 + [0]         
          p(c_7) = [1]                  
          p(c_8) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        f#(h(x,h(y,z))) = [2] x + [2] y + [2] z + [12]
                        > [2] x + [2] y + [2] z + [8] 
                        = c_8(f#(h(+(x,y),z)),+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        +(x,+(y,z)) =  [1] x + [1] y + [1] z + [2]
                    >= [1] x + [1] y + [1] z + [2]
                    =  +(+(x,y),z)                
        
           +(x,0()) =  [1] x + [2]                
                    >= [1] x + [0]                
                    =  x                          
        
          +(x,s(y)) =  [1] x + [1]                
                    >= [0]                        
                    =  s(+(x,y))                  
        
           +(0(),y) =  [1] y + [2]                
                    >= [1] y + [0]                
                    =  y                          
        
          +(s(x),y) =  [1] y + [1]                
                    >= [0]                        
                    =  s(+(x,y))                  
        
******* Step 1.b:6.a:1.b:1.b:1.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:6.a:1.b:1.b:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
******* Step 1.b:6.a:1.b:1.b:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

****** Step 1.b:6.a:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> +#(x,y)
            f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(s(x),y) -> c_5(+#(x,y))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:6.a:1.b:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            f#(h(x,h(y,z))) -> +#(x,y)
            f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_3) = {1},
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {+,+#,f#}
        TcT has computed the following interpretation:
            p(+) = 1 + x1 + x2                     
            p(0) = 1                               
            p(f) = 1                               
            p(g) = 1                               
            p(h) = 1 + x1 + x2                     
            p(s) = 1 + x1                          
           p(+#) = 1 + 2*x1 + 2*x1*x2 + 2*x2 + x2^2
           p(f#) = 1 + x1 + x1^2                   
          p(c_1) = x1 + x2                         
          p(c_2) = 0                               
          p(c_3) = x1                              
          p(c_4) = 0                               
          p(c_5) = x1                              
          p(c_6) = 0                               
          p(c_7) = 0                               
          p(c_8) = x2                              
        
        Following rules are strictly oriented:
        +#(s(x),y) = 3 + 2*x + 2*x*y + 4*y + y^2
                   > 1 + 2*x + 2*x*y + 2*y + y^2
                   = c_5(+#(x,y))               
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  4 + 4*x + 2*x*y + 2*x*z + 4*y + 2*y*z + y^2 + 4*z + z^2      
                        >= 4 + 4*x + 2*x*y + 2*x*z + 4*y + 2*y*z + y^2 + 4*z + z^2      
                        =  c_1(+#(+(x,y),z),+#(x,y))                                    
        
             +#(x,s(y)) =  4 + 4*x + 2*x*y + 4*y + y^2                                  
                        >= 1 + 2*x + 2*x*y + 2*y + y^2                                  
                        =  c_3(+#(x,y))                                                 
        
        f#(h(x,h(y,z))) =  7 + 5*x + 2*x*y + 2*x*z + x^2 + 5*y + 2*y*z + y^2 + 5*z + z^2
                        >= 1 + 2*x + 2*x*y + 2*y + y^2                                  
                        =  +#(x,y)                                                      
        
        f#(h(x,h(y,z))) =  7 + 5*x + 2*x*y + 2*x*z + x^2 + 5*y + 2*y*z + y^2 + 5*z + z^2
                        >= 7 + 5*x + 2*x*y + 2*x*z + x^2 + 5*y + 2*y*z + y^2 + 5*z + z^2
                        =  f#(h(+(x,y),z))                                              
        
            +(x,+(y,z)) =  2 + x + y + z                                                
                        >= 2 + x + y + z                                                
                        =  +(+(x,y),z)                                                  
        
               +(x,0()) =  2 + x                                                        
                        >= x                                                            
                        =  x                                                            
        
              +(x,s(y)) =  2 + x + y                                                    
                        >= 2 + x + y                                                    
                        =  s(+(x,y))                                                    
        
               +(0(),y) =  2 + y                                                        
                        >= y                                                            
                        =  y                                                            
        
              +(s(x),y) =  2 + x + y                                                    
                        >= 2 + x + y                                                    
                        =  s(+(x,y))                                                    
        
******* Step 1.b:6.a:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
            f#(h(x,h(y,z))) -> +#(x,y)
            f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:6.a:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
            f#(h(x,h(y,z))) -> +#(x,y)
            f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:W:+#(x,s(y)) -> c_3(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:W:+#(s(x),y) -> c_5(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:W:f#(h(x,h(y,z))) -> +#(x,y)
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:W:f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
             -->_1 f#(h(x,h(y,z))) -> f#(h(+(x,y),z)):5
             -->_1 f#(h(x,h(y,z))) -> +#(x,y):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: f#(h(x,h(y,z))) -> f#(h(+(x,y),z))
          4: f#(h(x,h(y,z))) -> +#(x,y)
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          3: +#(s(x),y) -> c_5(+#(x,y))
          2: +#(x,s(y)) -> c_3(+#(x,y))
******* Step 1.b:6.a:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,s(y)) -> c_3(+#(x,y))
            +#(s(x),y) -> c_5(+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
          
          2:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_2 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
          3:W:+#(x,s(y)) -> c_3(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
          4:W:+#(s(x),y) -> c_5(+#(x,y))
             -->_1 +#(s(x),y) -> c_5(+#(x,y)):4
             -->_1 +#(x,s(y)) -> c_3(+#(x,y)):3
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: +#(s(x),y) -> c_5(+#(x,y))
          3: +#(x,s(y)) -> c_3(+#(x,y))
          2: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y))
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)),+#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
*** Step 1.b:6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {+#,f#}
        TcT has computed the following interpretation:
            p(+) = [6]         
            p(0) = [0]         
            p(f) = [1]         
            p(g) = [1] x1 + [0]
            p(h) = [1] x2 + [2]
            p(s) = [1] x1 + [2]
           p(+#) = [1] x2 + [1]
           p(f#) = [4] x1 + [1]
          p(c_1) = [1] x2 + [1]
          p(c_2) = [0]         
          p(c_3) = [8] x1 + [0]
          p(c_4) = [2]         
          p(c_5) = [8] x1 + [1]
          p(c_6) = [1] x1 + [2]
          p(c_7) = [1]         
          p(c_8) = [1] x1 + [6]
        
        Following rules are strictly oriented:
        f#(h(x,h(y,z))) = [4] z + [17]        
                        > [4] z + [15]        
                        = c_8(f#(h(+(x,y),z)))
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
             -->_1 f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: f#(h(x,h(y,z))) -> c_8(f#(h(+(x,y),z)))
**** Step 1.b:6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(x,s(y)) -> s(+(x,y))
            +(0(),y) -> y
            +(s(x),y) -> s(+(x,y))
        - Signature:
            {+/2,f/1,+#/2,f#/1} / {0/0,g/1,h/2,s/1,c_1/2,c_2/0,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,f#} and constructors {0,g,h,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))