* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(a(),g(y)) -> g(g(y))
            f(g(x),a()) -> f(x,g(a()))
            f(g(x),g(y)) -> h(g(y),x,g(y))
            h(a(),y,z) -> z
            h(g(x),y,z) -> f(y,h(x,y,z))
        - Signature:
            {f/2,h/3} / {a/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,h} and constructors {a,g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(a(),g(y)) -> g(g(y))
            f(g(x),a()) -> f(x,g(a()))
            f(g(x),g(y)) -> h(g(y),x,g(y))
            h(a(),y,z) -> z
            h(g(x),y,z) -> f(y,h(x,y,z))
        - Signature:
            {f/2,h/3} / {a/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,h} and constructors {a,g}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          h(x,y,z){x -> g(x)} =
            h(g(x),y,z) ->^+ f(y,h(x,y,z))
              = C[h(x,y,z) = h(x,y,z){}]

WORST_CASE(Omega(n^1),?)