0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 691 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 275 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)
g(f(x, y), z) → f(x, g(y, z)) [1]
g(h(x, y), z) → g(x, f(y, z)) [1]
g(x, h(y, z)) → h(g(x, y), z) [1]
g(f(x, y), z) → f(x, g(y, z)) [1]
g(h(x, y), z) → g(x, f(y, z)) [1]
g(x, h(y, z)) → h(g(x, y), z) [1]
g :: f:h → f:h → f:h f :: a → f:h → f:h h :: f:h → a → f:h |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
g
const, const1
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
const => 0
const1 => 0
g(z', z'') -{ 1 }→ g(x, 1 + y + z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + x + g(y, z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + g(x, y) + z :|: z >= 0, z' = x, x >= 0, y >= 0, z'' = 1 + y + z
g(z', z'') -{ 1 }→ g(x, 1 + y + z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + x + g(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + g(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
{ g } |
g(z', z'') -{ 1 }→ g(x, 1 + y + z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + x + g(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + g(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
g(z', z'') -{ 1 }→ g(x, 1 + y + z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + x + g(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + g(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
g: runtime: ?, size: O(1) [0] |
g(z', z'') -{ 1 }→ g(x, 1 + y + z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + x + g(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
g(z', z'') -{ 1 }→ 1 + g(z', y) + z :|: z >= 0, z' >= 0, y >= 0, z'' = 1 + y + z
g: runtime: O(n1) [2·z' + z''], size: O(1) [0] |