* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: int(0(),0()) -> .(0(),nil()) int(0(),s(y)) -> .(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> int_list(int(x,y)) int_list(.(x,y)) -> .(s(x),int_list(y)) int_list(nil()) -> nil() - Signature: {int/2,int_list/1} / {./2,0/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {int,int_list} and constructors {.,0,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: int(0(),0()) -> .(0(),nil()) int(0(),s(y)) -> .(0(),int(s(0()),s(y))) int(s(x),0()) -> nil() int(s(x),s(y)) -> int_list(int(x,y)) int_list(.(x,y)) -> .(s(x),int_list(y)) int_list(nil()) -> nil() - Signature: {int/2,int_list/1} / {./2,0/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {int,int_list} and constructors {.,0,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: int(x,y){x -> s(x),y -> s(y)} = int(s(x),s(y)) ->^+ int_list(int(x,y)) = C[int(x,y) = int(x,y){}] WORST_CASE(Omega(n^1),?)