* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            int(0(),0()) -> .(0(),nil())
            int(0(),s(y)) -> .(0(),int(s(0()),s(y)))
            int(s(x),0()) -> nil()
            int(s(x),s(y)) -> int_list(int(x,y))
            int_list(.(x,y)) -> .(s(x),int_list(y))
            int_list(nil()) -> nil()
        - Signature:
            {int/2,int_list/1} / {./2,0/0,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {int,int_list} and constructors {.,0,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            int(0(),0()) -> .(0(),nil())
            int(0(),s(y)) -> .(0(),int(s(0()),s(y)))
            int(s(x),0()) -> nil()
            int(s(x),s(y)) -> int_list(int(x,y))
            int_list(.(x,y)) -> .(s(x),int_list(y))
            int_list(nil()) -> nil()
        - Signature:
            {int/2,int_list/1} / {./2,0/0,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {int,int_list} and constructors {.,0,nil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          int(x,y){x -> s(x),y -> s(y)} =
            int(s(x),s(y)) ->^+ int_list(int(x,y))
              = C[int(x,y) = int(x,y){}]

WORST_CASE(Omega(n^1),?)