* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            ++(x,++(y,z)) -> ++(++(x,y),z)
            ++(x,nil()) -> x
            ++(.(x,y),z) -> .(x,++(y,z))
            ++(nil(),y) -> y
            make(x) -> .(x,nil())
            rev(++(x,y)) -> ++(rev(y),rev(x))
            rev(nil()) -> nil()
            rev(rev(x)) -> x
        - Signature:
            {++/2,make/1,rev/1} / {./2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            ++(x,++(y,z)) -> ++(++(x,y),z)
            ++(x,nil()) -> x
            ++(.(x,y),z) -> .(x,++(y,z))
            ++(nil(),y) -> y
            make(x) -> .(x,nil())
            rev(++(x,y)) -> ++(rev(y),rev(x))
            rev(nil()) -> nil()
            rev(rev(x)) -> x
        - Signature:
            {++/2,make/1,rev/1} / {./2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          ++(y,z){y -> .(x,y)} =
            ++(.(x,y),z) ->^+ .(x,++(y,z))
              = C[++(y,z) = ++(y,z){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            ++(x,++(y,z)) -> ++(++(x,y),z)
            ++(x,nil()) -> x
            ++(.(x,y),z) -> .(x,++(y,z))
            ++(nil(),y) -> y
            make(x) -> .(x,nil())
            rev(++(x,y)) -> ++(rev(y),rev(x))
            rev(nil()) -> nil()
            rev(rev(x)) -> x
        - Signature:
            {++/2,make/1,rev/1} / {./2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 1.
        The enriched problem is compatible with follwoing automaton.
          ++_0(2,2) -> 1
          ++_1(2,2) -> 3
          ._0(2,2) -> 1
          ._0(2,2) -> 2
          ._0(2,2) -> 3
          ._1(2,3) -> 1
          ._1(2,3) -> 3
          make_0(2) -> 1
          nil_0() -> 1
          nil_0() -> 2
          nil_0() -> 3
          nil_1() -> 1
          nil_1() -> 3
          rev_0(2) -> 1
          2 -> 1
          2 -> 3
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            ++(x,++(y,z)) -> ++(++(x,y),z)
            ++(x,nil()) -> x
            ++(.(x,y),z) -> .(x,++(y,z))
            ++(nil(),y) -> y
            make(x) -> .(x,nil())
            rev(++(x,y)) -> ++(rev(y),rev(x))
            rev(nil()) -> nil()
            rev(rev(x)) -> x
        - Signature:
            {++/2,make/1,rev/1} / {./2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {++,make,rev} and constructors {.,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))