* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: rev(++(x,y)) -> ++(rev1(x,y),rev2(x,y)) rev(nil()) -> nil() rev1(x,++(y,z)) -> rev1(y,z) rev1(x,nil()) -> x rev2(x,++(y,z)) -> rev(++(x,rev(rev2(y,z)))) rev2(x,nil()) -> nil() - Signature: {rev/1,rev1/2,rev2/2} / {++/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {++,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: rev(++(x,y)) -> ++(rev1(x,y),rev2(x,y)) rev(nil()) -> nil() rev1(x,++(y,z)) -> rev1(y,z) rev1(x,nil()) -> x rev2(x,++(y,z)) -> rev(++(x,rev(rev2(y,z)))) rev2(x,nil()) -> nil() - Signature: {rev/1,rev1/2,rev2/2} / {++/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {++,nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: rev1(x,z){z -> ++(y,z)} = rev1(x,++(y,z)) ->^+ rev1(y,z) = C[rev1(y,z) = rev1(x,z){x -> y}] WORST_CASE(Omega(n^1),?)