0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 596 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 207 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
f(0) → s(0)
f(s(0)) → s(s(0))
f(s(0)) → *(s(s(0)), f(0))
f(+(x, s(0))) → +(s(s(0)), f(x))
f(+(x, y)) → *(f(x), f(y))
f(0) → s(0) [1]
f(s(0)) → s(s(0)) [1]
f(s(0)) → *(s(s(0)), f(0)) [1]
f(+(x, s(0))) → +(s(s(0)), f(x)) [1]
f(+(x, y)) → *(f(x), f(y)) [1]
f(0) → s(0) [1]
f(s(0)) → s(s(0)) [1]
f(s(0)) → *(s(s(0)), f(0)) [1]
f(+(x, s(0))) → +(s(s(0)), f(x)) [1]
f(+(x, y)) → *(f(x), f(y)) [1]
f :: 0:s:*:+ → 0:s:*:+ 0 :: 0:s:*:+ s :: 0:s:*:+ → 0:s:*:+ * :: 0:s:*:+ → 0:s:*:+ → 0:s:*:+ + :: 0:s:*:+ → 0:s:*:+ → 0:s:*:+ |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
f(z) -{ 1 }→ 1 + 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + 0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + f(x) + f(y) :|: z = 1 + x + y, x >= 0, y >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(x) :|: x >= 0, z = 1 + x + (1 + 0)
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + 0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + f(x) + f(y) :|: z = 1 + x + y, x >= 0, y >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(z - 2) :|: z - 2 >= 0
{ f } |
f(z) -{ 1 }→ 1 + 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + 0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + f(x) + f(y) :|: z = 1 + x + y, x >= 0, y >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(z - 2) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 + 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + 0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + f(x) + f(y) :|: z = 1 + x + y, x >= 0, y >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(z - 2) :|: z - 2 >= 0
f: runtime: ?, size: O(n1) [4 + 4·z] |
f(z) -{ 1 }→ 1 + 0 :|: z = 0
f(z) -{ 1 }→ 1 + (1 + 0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + f(x) + f(y) :|: z = 1 + x + y, x >= 0, y >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(0) :|: z = 1 + 0
f(z) -{ 1 }→ 1 + (1 + (1 + 0)) + f(z - 2) :|: z - 2 >= 0
f: runtime: O(n1) [2 + 3·z], size: O(n1) [4 + 4·z] |