* Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: a(c(d(x))) -> c(x) u(b(d(d(x)))) -> b(x) v(a(a(x))) -> u(v(x)) v(a(c(x))) -> u(b(d(x))) v(c(x)) -> b(x) w(a(a(x))) -> u(w(x)) w(a(c(x))) -> u(b(d(x))) w(c(x)) -> b(x) - Signature: {a/1,u/1,v/1,w/1} / {b/1,c/1,d/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,u,v,w} and constructors {b,c,d} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: a(c(d(x))) -> c(x) u(b(d(d(x)))) -> b(x) v(a(a(x))) -> u(v(x)) v(a(c(x))) -> u(b(d(x))) v(c(x)) -> b(x) w(a(a(x))) -> u(w(x)) w(a(c(x))) -> u(b(d(x))) w(c(x)) -> b(x) - Signature: {a/1,u/1,v/1,w/1} / {b/1,c/1,d/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,u,v,w} and constructors {b,c,d} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(a(a(x))) -> c_3(u#(v(x)),v#(x)) v#(a(c(x))) -> c_4(u#(b(d(x)))) v#(c(x)) -> c_5() w#(a(a(x))) -> c_6(u#(w(x)),w#(x)) w#(a(c(x))) -> c_7(u#(b(d(x)))) w#(c(x)) -> c_8() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(a(a(x))) -> c_3(u#(v(x)),v#(x)) v#(a(c(x))) -> c_4(u#(b(d(x)))) v#(c(x)) -> c_5() w#(a(a(x))) -> c_6(u#(w(x)),w#(x)) w#(a(c(x))) -> c_7(u#(b(d(x)))) w#(c(x)) -> c_8() - Weak TRS: a(c(d(x))) -> c(x) u(b(d(d(x)))) -> b(x) v(a(a(x))) -> u(v(x)) v(a(c(x))) -> u(b(d(x))) v(c(x)) -> b(x) w(a(a(x))) -> u(w(x)) w(a(c(x))) -> u(b(d(x))) w(c(x)) -> b(x) - Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,u#,v#,w#} and constructors {b,c,d} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(c(x)) -> c_5() w#(c(x)) -> c_8() * Step 4: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: a#(c(d(x))) -> c_1() u#(b(d(d(x)))) -> c_2() v#(c(x)) -> c_5() w#(c(x)) -> c_8() - Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,u#,v#,w#} and constructors {b,c,d} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:a#(c(d(x))) -> c_1() 2:S:u#(b(d(d(x)))) -> c_2() 3:S:v#(c(x)) -> c_5() 4:S:w#(c(x)) -> c_8() The dependency graph contains no loops, we remove all dependency pairs. * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {a/1,u/1,v/1,w/1,a#/1,u#/1,v#/1,w#/1} / {b/1,c/1,d/1,c_1/0,c_2/0,c_3/2,c_4/1,c_5/0,c_6/2,c_7/1,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,u#,v#,w#} and constructors {b,c,d} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))