(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).


The TRS R consists of the following rules:

a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
v(c(x)) → b(x)
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))
w(c(x)) → b(x)

Rewrite Strategy: INNERMOST

(1) DependencyGraphProof (BOTH BOUNDS(ID, ID) transformation)

The following rules are not reachable from basic terms in the dependency graph and can be removed:
v(a(a(x))) → u(v(x))
v(a(c(x))) → u(b(d(x)))
w(a(a(x))) → u(w(x))
w(a(c(x))) → u(b(d(x)))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).


The TRS R consists of the following rules:

v(c(x)) → b(x)
a(c(d(x))) → c(x)
u(b(d(d(x)))) → b(x)
w(c(x)) → b(x)

Rewrite Strategy: INNERMOST

(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

v(c(z0)) → b(z0)
a(c(d(z0))) → c(z0)
u(b(d(d(z0)))) → b(z0)
w(c(z0)) → b(z0)
Tuples:

V(c(z0)) → c1
A(c(d(z0))) → c2
U(b(d(d(z0)))) → c3
W(c(z0)) → c4
S tuples:

V(c(z0)) → c1
A(c(d(z0))) → c2
U(b(d(d(z0)))) → c3
W(c(z0)) → c4
K tuples:none
Defined Rule Symbols:

v, a, u, w

Defined Pair Symbols:

V, A, U, W

Compound Symbols:

c1, c2, c3, c4

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing nodes:

W(c(z0)) → c4
U(b(d(d(z0)))) → c3
V(c(z0)) → c1
A(c(d(z0))) → c2

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

v(c(z0)) → b(z0)
a(c(d(z0))) → c(z0)
u(b(d(d(z0)))) → b(z0)
w(c(z0)) → b(z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

v, a, u, w

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(8) BOUNDS(1, 1)