* Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: b(u(x)) -> a(e(x)) c(u(x)) -> b(x) d(x) -> e(u(x)) d(u(x)) -> c(x) v(e(x)) -> x - Signature: {b/1,c/1,d/1,v/1} / {a/1,e/1,u/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,c,d,v} and constructors {a,e,u} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: b(u(x)) -> a(e(x)) c(u(x)) -> b(x) d(x) -> e(u(x)) d(u(x)) -> c(x) v(e(x)) -> x - Signature: {b/1,c/1,d/1,v/1} / {a/1,e/1,u/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,c,d,v} and constructors {a,e,u} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs b#(u(x)) -> c_1() c#(u(x)) -> c_2(b#(x)) d#(x) -> c_3() d#(u(x)) -> c_4(c#(x)) v#(e(x)) -> c_5() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: b#(u(x)) -> c_1() c#(u(x)) -> c_2(b#(x)) d#(x) -> c_3() d#(u(x)) -> c_4(c#(x)) v#(e(x)) -> c_5() - Weak TRS: b(u(x)) -> a(e(x)) c(u(x)) -> b(x) d(x) -> e(u(x)) d(u(x)) -> c(x) v(e(x)) -> x - Signature: {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: b#(u(x)) -> c_1() c#(u(x)) -> c_2(b#(x)) d#(x) -> c_3() d#(u(x)) -> c_4(c#(x)) v#(e(x)) -> c_5() * Step 4: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: b#(u(x)) -> c_1() c#(u(x)) -> c_2(b#(x)) d#(x) -> c_3() d#(u(x)) -> c_4(c#(x)) v#(e(x)) -> c_5() - Signature: {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:b#(u(x)) -> c_1() 2:S:c#(u(x)) -> c_2(b#(x)) -->_1 b#(u(x)) -> c_1():1 3:S:d#(x) -> c_3() 4:S:d#(u(x)) -> c_4(c#(x)) -->_1 c#(u(x)) -> c_2(b#(x)):2 5:S:v#(e(x)) -> c_5() The dependency graph contains no loops, we remove all dependency pairs. * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))