* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
++(x,nil()) -> x
++(++(x,y),z) -> ++(x,++(y,z))
++(nil(),y) -> y
flatten(++(x,y)) -> ++(flatten(x),flatten(y))
flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y))
flatten(flatten(x)) -> flatten(x)
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
++(x,nil()) -> x
++(++(x,y),z) -> ++(x,++(y,z))
++(nil(),y) -> y
flatten(++(x,y)) -> ++(flatten(x),flatten(y))
flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y))
flatten(flatten(x)) -> flatten(x)
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
flatten(x){x -> unit(x)} =
flatten(unit(x)) ->^+ flatten(x)
= C[flatten(x) = flatten(x){}]
** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
++(x,nil()) -> x
++(++(x,y),z) -> ++(x,++(y,z))
++(nil(),y) -> y
flatten(++(x,y)) -> ++(flatten(x),flatten(y))
flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y))
flatten(flatten(x)) -> flatten(x)
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
++_0(2,2) -> 1
flatten_0(2) -> 1
flatten_1(2) -> 1
nil_0() -> 1
nil_0() -> 2
nil_1() -> 1
rev_0(2) -> 1
unit_0(2) -> 1
unit_0(2) -> 2
unit_1(2) -> 1
2 -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
++(x,nil()) -> x
++(++(x,y),z) -> ++(x,++(y,z))
++(nil(),y) -> y
flatten(++(x,y)) -> ++(flatten(x),flatten(y))
flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y))
flatten(flatten(x)) -> flatten(x)
flatten(nil()) -> nil()
flatten(unit(x)) -> flatten(x)
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
rev(unit(x)) -> unit(x)
- Signature:
{++/2,flatten/1,rev/1} / {nil/0,unit/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {++,flatten,rev} and constructors {nil,unit}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))