* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: ++(x,nil()) -> x ++(++(x,y),z) -> ++(x,++(y,z)) ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y - Signature: {++/2} / {./2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {++} and constructors {.,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: ++(x,nil()) -> x ++(++(x,y),z) -> ++(x,++(y,z)) ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y - Signature: {++/2} / {./2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {++} and constructors {.,nil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: ++(y,z){y -> .(x,y)} = ++(.(x,y),z) ->^+ .(x,++(y,z)) = C[++(y,z) = ++(y,z){}] ** Step 1.b:1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: ++(x,nil()) -> x ++(++(x,y),z) -> ++(x,++(y,z)) ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y - Signature: {++/2} / {./2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {++} and constructors {.,nil} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. ++_0(2,2) -> 1 ++_1(2,2) -> 3 ._0(2,2) -> 1 ._0(2,2) -> 2 ._0(2,2) -> 3 ._1(2,3) -> 1 ._1(2,3) -> 3 nil_0() -> 1 nil_0() -> 2 nil_0() -> 3 2 -> 1 2 -> 3 ** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: ++(x,nil()) -> x ++(++(x,y),z) -> ++(x,++(y,z)) ++(.(x,y),z) -> .(x,++(y,z)) ++(nil(),y) -> y - Signature: {++/2} / {./2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {++} and constructors {.,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))