(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
not0(0) → 0
or0(0, 0) → 0
implies0(0, 0) → 1
or1(0, 0) → 1
or1(0, 0) → 2
implies1(0, 2) → 1
implies1(0, 0) → 3
or1(0, 3) → 1
or1(0, 2) → 1
or1(0, 0) → 3
implies1(0, 2) → 3
or1(0, 3) → 3
implies2(0, 0) → 4
or2(0, 4) → 1
or1(0, 2) → 3
or2(0, 4) → 3
or1(0, 0) → 4
implies1(0, 2) → 4
or1(0, 3) → 4
or1(0, 2) → 4
or2(0, 4) → 4
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
implies(not(z0), z1) → or(z0, z1)
implies(not(z0), or(z1, z2)) → implies(z1, or(z0, z2))
implies(z0, or(z1, z2)) → or(z1, implies(z0, z2))
Tuples:
IMPLIES(not(z0), z1) → c
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
S tuples:
IMPLIES(not(z0), z1) → c
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
K tuples:none
Defined Rule Symbols:
implies
Defined Pair Symbols:
IMPLIES
Compound Symbols:
c, c1, c2
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IMPLIES(not(z0), z1) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
implies(not(z0), z1) → or(z0, z1)
implies(not(z0), or(z1, z2)) → implies(z1, or(z0, z2))
implies(z0, or(z1, z2)) → or(z1, implies(z0, z2))
Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
S tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
K tuples:none
Defined Rule Symbols:
implies
Defined Pair Symbols:
IMPLIES
Compound Symbols:
c1, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
implies(not(z0), z1) → or(z0, z1)
implies(not(z0), or(z1, z2)) → implies(z1, or(z0, z2))
implies(z0, or(z1, z2)) → or(z1, implies(z0, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
S tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
IMPLIES
Compound Symbols:
c1, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(IMPLIES(x1, x2)) = [2]x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(not(x1)) = 0
POL(or(x1, x2)) = [2] + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
S tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
K tuples:
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
IMPLIES
Compound Symbols:
c1, c2
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(IMPLIES(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(not(x1)) = [1] + x1
POL(or(x1, x2)) = x1 + x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
S tuples:none
K tuples:
IMPLIES(z0, or(z1, z2)) → c2(IMPLIES(z0, z2))
IMPLIES(not(z0), or(z1, z2)) → c1(IMPLIES(z1, or(z0, z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
IMPLIES
Compound Symbols:
c1, c2
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)