* Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) - Signature: {=/2,implies/2,not/1,or/2} / {and/2,true/0,xor/2} - Obligation: innermost runtime complexity wrt. defined symbols {=,implies,not,or} and constructors {and,true,xor} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) - Signature: {=/2,implies/2,not/1,or/2} / {and/2,true/0,xor/2} - Obligation: innermost runtime complexity wrt. defined symbols {=,implies,not,or} and constructors {and,true,xor} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() - Weak TRS: =(x,y) -> xor(x,xor(y,true())) implies(x,y) -> xor(and(x,y),xor(x,true())) not(x) -> xor(x,true()) or(x,y) -> xor(and(x,y),xor(x,y)) - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() * Step 4: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: =#(x,y) -> c_1() implies#(x,y) -> c_2() not#(x) -> c_3() or#(x,y) -> c_4() - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:=#(x,y) -> c_1() 2:S:implies#(x,y) -> c_2() 3:S:not#(x) -> c_3() 4:S:or#(x,y) -> c_4() The dependency graph contains no loops, we remove all dependency pairs. * Step 5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {=/2,implies/2,not/1,or/2,=#/2,implies#/2,not#/1,or#/2} / {and/2,true/0,xor/2,c_1/0,c_2/0,c_3/0,c_4/0} - Obligation: innermost runtime complexity wrt. defined symbols {=#,implies#,not#,or#} and constructors {and,true,xor} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))