* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: prime1(x,s(y)){y -> s(y)} = prime1(x,s(s(y))) ->^+ and(not(divp(s(s(y)),x)),prime1(x,s(y))) = C[prime1(x,s(y)) = prime1(x,s(y)){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(not) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(=) = [0] p(and) = [1] x1 + [1] x2 + [2] p(divp) = [0] p(false) = [0] p(not) = [1] x1 + [1] p(prime) = [1] x1 + [4] p(prime1) = [1] x2 + [13] p(rem) = [1] x2 + [0] p(s) = [1] x1 + [4] p(true) = [0] Following rules are strictly oriented: prime(0()) = [4] > [0] = false() prime(s(0())) = [8] > [0] = false() prime1(x,0()) = [13] > [0] = false() prime1(x,s(0())) = [17] > [0] = true() prime1(x,s(s(y))) = [1] y + [21] > [1] y + [20] = and(not(divp(s(s(y)),x)),prime1(x,s(y))) Following rules are (at-least) weakly oriented: divp(x,y) = [0] >= [0] = =(rem(x,y),0()) prime(s(s(x))) = [1] x + [12] >= [1] x + [17] = prime1(s(s(x)),s(x)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) prime(s(s(x))) -> prime1(s(s(x)),s(x)) - Weak TRS: prime(0()) -> false() prime(s(0())) -> false() prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(not) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(=) = [1] x1 + [7] p(and) = [1] x1 + [1] x2 + [0] p(divp) = [0] p(false) = [4] p(not) = [1] x1 + [0] p(prime) = [2] x1 + [9] p(prime1) = [4] x2 + [0] p(rem) = [8] p(s) = [4] p(true) = [0] Following rules are strictly oriented: prime(s(s(x))) = [17] > [16] = prime1(s(s(x)),s(x)) Following rules are (at-least) weakly oriented: divp(x,y) = [0] >= [15] = =(rem(x,y),0()) prime(0()) = [11] >= [4] = false() prime(s(0())) = [17] >= [4] = false() prime1(x,0()) = [4] >= [4] = false() prime1(x,s(0())) = [16] >= [0] = true() prime1(x,s(s(y))) = [16] >= [16] = and(not(divp(s(s(y)),x)),prime1(x,s(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: divp(x,y) -> =(rem(x,y),0()) - Weak TRS: prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(and) = {1,2}, uargs(not) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(=) = [1] x2 + [1] p(and) = [1] x1 + [1] x2 + [0] p(divp) = [4] p(false) = [1] p(not) = [1] x1 + [0] p(prime) = [13] x1 + [5] p(prime1) = [4] x1 + [4] x2 + [12] p(rem) = [1] x2 + [1] p(s) = [1] x1 + [1] p(true) = [0] Following rules are strictly oriented: divp(x,y) = [4] > [2] = =(rem(x,y),0()) Following rules are (at-least) weakly oriented: prime(0()) = [18] >= [1] = false() prime(s(0())) = [31] >= [1] = false() prime(s(s(x))) = [13] x + [31] >= [8] x + [24] = prime1(s(s(x)),s(x)) prime1(x,0()) = [4] x + [16] >= [1] = false() prime1(x,s(0())) = [4] x + [20] >= [0] = true() prime1(x,s(s(y))) = [4] x + [4] y + [20] >= [4] x + [4] y + [20] = and(not(divp(s(s(y)),x)),prime1(x,s(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: divp(x,y) -> =(rem(x,y),0()) prime(0()) -> false() prime(s(0())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,0()) -> false() prime1(x,s(0())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) - Signature: {divp/2,prime/1,prime1/2} / {0/0,=/2,and/2,false/0,not/1,rem/2,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {divp,prime,prime1} and constructors {0,=,and,false,not ,rem,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))