0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 394 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 144 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 405 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 129 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 1645 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 228 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^2)
exp(x, 0) → s(0)
exp(x, s(y)) → *(x, exp(x, y))
*(0, y) → 0
*(s(x), y) → +(y, *(x, y))
-(0, y) → 0
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
exp(x, 0) → s(0) [1]
exp(x, s(y)) → *(x, exp(x, y)) [1]
*(0, y) → 0 [1]
*(s(x), y) → +(y, *(x, y)) [1]
-(0, y) → 0 [1]
-(x, 0) → x [1]
-(s(x), s(y)) → -(x, y) [1]
* => times |
- => minus |
exp(x, 0) → s(0) [1]
exp(x, s(y)) → times(x, exp(x, y)) [1]
times(0, y) → 0 [1]
times(s(x), y) → +(y, times(x, y)) [1]
minus(0, y) → 0 [1]
minus(x, 0) → x [1]
minus(s(x), s(y)) → minus(x, y) [1]
exp(x, 0) → s(0) [1]
exp(x, s(y)) → times(x, exp(x, y)) [1]
times(0, y) → 0 [1]
times(s(x), y) → +(y, times(x, y)) [1]
minus(0, y) → 0 [1]
minus(x, 0) → x [1]
minus(s(x), s(y)) → minus(x, y) [1]
exp :: 0:s:+ → 0:s:+ → 0:s:+ 0 :: 0:s:+ s :: 0:s:+ → 0:s:+ times :: 0:s:+ → 0:s:+ → 0:s:+ + :: 0:s:+ → 0:s:+ → 0:s:+ minus :: 0:s:+ → 0:s:+ → 0:s:+ |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
minus
exp
times
exp(v0, v1) → 0 [0]
times(v0, v1) → 0 [0]
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
exp(z, z') -{ 2 }→ times(x, times(x, exp(x, y'))) :|: z' = 1 + (1 + y'), x >= 0, y' >= 0, z = x
exp(z, z') -{ 1 }→ times(x, 0) :|: z' = 1 + y, x >= 0, y >= 0, z = x
exp(z, z') -{ 2 }→ times(x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = x
exp(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
exp(z, z') -{ 1 }→ 1 + 0 :|: x >= 0, z = x, z' = 0
minus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
minus(z, z') -{ 1 }→ minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x
minus(z, z') -{ 1 }→ 0 :|: y >= 0, z = 0, z' = y
times(z, z') -{ 1 }→ 0 :|: y >= 0, z = 0, z' = y
times(z, z') -{ 0 }→ 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1
times(z, z') -{ 1 }→ 1 + y + times(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 1 }→ times(z, 0) :|: z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, 1 + 0) :|: z >= 0, z' = 1 + 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 }→ 1 + z' + times(z - 1, z') :|: z - 1 >= 0, z' >= 0
{ times } { minus } { exp } |
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 1 }→ times(z, 0) :|: z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, 1 + 0) :|: z >= 0, z' = 1 + 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 }→ 1 + z' + times(z - 1, z') :|: z - 1 >= 0, z' >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 1 }→ times(z, 0) :|: z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, 1 + 0) :|: z >= 0, z' = 1 + 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 }→ 1 + z' + times(z - 1, z') :|: z - 1 >= 0, z' >= 0
times: runtime: ?, size: O(n2) [z + z·z'] |
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 1 }→ times(z, 0) :|: z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, 1 + 0) :|: z >= 0, z' = 1 + 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 }→ 1 + z' + times(z - 1, z') :|: z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] minus: runtime: ?, size: O(n1) [z] |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] minus: runtime: O(n1) [1 + z'], size: O(n1) [z] |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 + z' }→ s1 :|: s1 >= 0, s1 <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] minus: runtime: O(n1) [1 + z'], size: O(n1) [z] |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 + z' }→ s1 :|: s1 >= 0, s1 <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] minus: runtime: O(n1) [1 + z'], size: O(n1) [z] exp: runtime: ?, size: INF |
exp(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * (z * (1 + 0)) + 1 * z, z >= 0, z' = 1 + 0
exp(z, z') -{ 2 + z }→ s' :|: s' >= 0, s' <= 1 * (z * 0) + 1 * z, z >= 0, z' - 1 >= 0
exp(z, z') -{ 2 }→ times(z, times(z, exp(z, z' - 2))) :|: z >= 0, z' - 2 >= 0
exp(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
exp(z, z') -{ 1 }→ 1 + 0 :|: z >= 0, z' = 0
minus(z, z') -{ 1 + z' }→ s1 :|: s1 >= 0, s1 <= 1 * (z - 1), z - 1 >= 0, z' - 1 >= 0
minus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
minus(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
times(z, z') -{ 0 }→ 0 :|: z >= 0, z' >= 0
times(z, z') -{ 1 + z }→ 1 + z' + s'' :|: s'' >= 0, s'' <= 1 * ((z - 1) * z') + 1 * (z - 1), z - 1 >= 0, z' >= 0
times: runtime: O(n1) [1 + z], size: O(n2) [z + z·z'] minus: runtime: O(n1) [1 + z'], size: O(n1) [z] exp: runtime: O(n2) [6 + 2·z + 2·z·z' + 4·z'], size: INF |