0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 344 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 65 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 282 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 47 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
sum(0) → 0
sum(s(x)) → +(sum(x), s(x))
sum1(0) → 0
sum1(s(x)) → s(+(sum1(x), +(x, x)))
sum(0) → 0 [1]
sum(s(x)) → +(sum(x), s(x)) [1]
sum1(0) → 0 [1]
sum1(s(x)) → s(+(sum1(x), +(x, x))) [1]
sum(0) → 0 [1]
sum(s(x)) → +(sum(x), s(x)) [1]
sum1(0) → 0 [1]
sum1(s(x)) → s(+(sum1(x), +(x, x))) [1]
sum :: 0:s:+ → 0:s:+ 0 :: 0:s:+ s :: 0:s:+ → 0:s:+ + :: 0:s:+ → 0:s:+ → 0:s:+ sum1 :: 0:s:+ → 0:s:+ |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
sum
sum1
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(x) + (1 + x) :|: x >= 0, z = 1 + x
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 }→ 1 + (1 + sum1(x) + (1 + x + x)) :|: x >= 0, z = 1 + x
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 }→ 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0
{ sum1 } { sum } |
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 }→ 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 }→ 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0
sum1: runtime: ?, size: O(n2) [z + 2·z2] |
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 }→ 1 + (1 + sum1(z - 1) + (1 + (z - 1) + (z - 1))) :|: z - 1 >= 0
sum1: runtime: O(n1) [1 + z], size: O(n2) [z + 2·z2] |
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 + z }→ 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 1 * (z - 1), z - 1 >= 0
sum1: runtime: O(n1) [1 + z], size: O(n2) [z + 2·z2] |
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 + z }→ 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 1 * (z - 1), z - 1 >= 0
sum1: runtime: O(n1) [1 + z], size: O(n2) [z + 2·z2] sum: runtime: ?, size: O(n2) [z + z2] |
sum(z) -{ 1 }→ 0 :|: z = 0
sum(z) -{ 1 }→ 1 + sum(z - 1) + (1 + (z - 1)) :|: z - 1 >= 0
sum1(z) -{ 1 }→ 0 :|: z = 0
sum1(z) -{ 1 + z }→ 1 + (1 + s + (1 + (z - 1) + (z - 1))) :|: s >= 0, s <= 2 * ((z - 1) * (z - 1)) + 1 * (z - 1), z - 1 >= 0
sum1: runtime: O(n1) [1 + z], size: O(n2) [z + 2·z2] sum: runtime: O(n1) [1 + z], size: O(n2) [z + z2] |