* Step 1: Sum WORST_CASE(NON_POLY,?)
    + Considered Problem:
        - Strict TRS:
            f(0()) -> 1()
            f(s(x)) -> +(f(x),s(f(x)))
            f(s(x)) -> g(f(x))
            g(x) -> +(x,s(x))
        - Signature:
            {f/1,g/1} / {+/2,0/0,1/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {+,0,1,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(NON_POLY,?)
    + Considered Problem:
        - Strict TRS:
            f(0()) -> 1()
            f(s(x)) -> +(f(x),s(f(x)))
            f(s(x)) -> g(f(x))
            g(x) -> +(x,s(x))
        - Signature:
            {f/1,g/1} / {+/2,0/0,1/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {+,0,1,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x){x -> s(x)} =
            f(s(x)) ->^+ +(f(x),s(f(x)))
              = C[f(x) = f(x){}]
          f(x){x -> s(x)} =
            f(s(x)) ->^+ +(f(x),s(f(x)))
              = C[f(x) = f(x){}]

WORST_CASE(NON_POLY,?)