0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 48 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 189 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 31 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 2895 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 519 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, EXP)
f(0) → 1
f(s(x)) → g(f(x))
g(x) → +(x, s(x))
f(s(x)) → +(f(x), s(f(x)))
f(0) → 1 [1]
f(s(x)) → g(f(x)) [1]
g(x) → +(x, s(x)) [1]
f(s(x)) → +(f(x), s(f(x))) [1]
f(0) → 1 [1]
f(s(x)) → g(f(x)) [1]
g(x) → +(x, s(x)) [1]
f(s(x)) → +(f(x), s(f(x))) [1]
f :: 0:1:s:+ → 0:1:s:+ 0 :: 0:1:s:+ 1 :: 0:1:s:+ s :: 0:1:s:+ → 0:1:s:+ g :: 0:1:s:+ → 0:1:s:+ + :: 0:1:s:+ → 0:1:s:+ → 0:1:s:+ |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
f
g
f(v0) → null_f [0]
null_f
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
1 => 1
null_f => 0
f(z) -{ 2 }→ g(g(f(x'))) :|: x' >= 0, z = 1 + (1 + x')
f(z) -{ 2 }→ g(1) :|: z = 1 + 0
f(z) -{ 1 }→ g(0) :|: x >= 0, z = 1 + x
f(z) -{ 2 }→ g(1 + f(x'') + (1 + f(x''))) :|: x'' >= 0, z = 1 + (1 + x'')
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
f(z) -{ 1 }→ 1 + f(x) + (1 + f(x)) :|: x >= 0, z = 1 + x
g(z) -{ 1 }→ 1 + x + (1 + x) :|: x >= 0, z = x
g(z) -{ 1 }→ 1 + x + (1 + x) :|: x >= 0, z = x
f(z) -{ 2 }→ g(g(f(x'))) :|: x' >= 0, z = 1 + (1 + x')
f(z) -{ 2 }→ g(1 + f(x'') + (1 + f(x''))) :|: x'' >= 0, z = 1 + (1 + x'')
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: x >= 0, z = 1 + x, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(x) + (1 + f(x)) :|: x >= 0, z = 1 + x
g(z) -{ 1 }→ 1 + x + (1 + x) :|: x >= 0, z = x
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
{ g } { f } |
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
g: runtime: ?, size: O(n1) [2 + 2·z] |
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [2 + 2·z] |
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [2 + 2·z] |
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [2 + 2·z] f: runtime: ?, size: EXP |
f(z) -{ 2 }→ g(g(f(z - 2))) :|: z - 2 >= 0
f(z) -{ 2 }→ g(1 + f(z - 2) + (1 + f(z - 2))) :|: z - 2 >= 0
f(z) -{ 1 }→ 1 :|: z = 0
f(z) -{ 0 }→ 0 :|: z >= 0
f(z) -{ 3 }→ 1 + x + (1 + x) :|: z = 1 + 0, x >= 0, 1 = x
f(z) -{ 2 }→ 1 + x' + (1 + x') :|: z - 1 >= 0, x' >= 0, 0 = x'
f(z) -{ 1 }→ 1 + f(z - 1) + (1 + f(z - 1)) :|: z - 1 >= 0
g(z) -{ 1 }→ 1 + z + (1 + z) :|: z >= 0
g: runtime: O(1) [1], size: O(n1) [2 + 2·z] f: runtime: EXP, size: EXP |