(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
+(0, y) → y
+(s(x), y) → s(+(x, y))
+(s(x), y) → +(x, s(y))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
00() → 0
s0(0) → 0
+0(0, 0) → 1
+1(0, 0) → 2
s1(2) → 1
s1(0) → 3
+1(0, 3) → 1
+1(0, 3) → 2
s1(2) → 2
s1(3) → 3
0 → 1
0 → 2
3 → 1
3 → 2
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
+(s(z0), z1) → +(z0, s(z1))
Tuples:
+'(0, z0) → c
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:
+'(0, z0) → c
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
K tuples:none
Defined Rule Symbols:
+
Defined Pair Symbols:
+'
Compound Symbols:
c, c1, c2
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
+'(0, z0) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
+(s(z0), z1) → +(z0, s(z1))
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
K tuples:none
Defined Rule Symbols:
+
Defined Pair Symbols:
+'
Compound Symbols:
c1, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
+(0, z0) → z0
+(s(z0), z1) → s(+(z0, z1))
+(s(z0), z1) → +(z0, s(z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
+'
Compound Symbols:
c1, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
We considered the (Usable) Rules:none
And the Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = [2]x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [2] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
S tuples:none
K tuples:
+'(s(z0), z1) → c1(+'(z0, z1))
+'(s(z0), z1) → c2(+'(z0, s(z1)))
Defined Rule Symbols:none
Defined Pair Symbols:
+'
Compound Symbols:
c1, c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)