0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 359 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 159 ms)
↳18 CpxRNTS
↳19 FinalProof (⇔, 0 ms)
↳20 BOUNDS(1, n^1)
f(a, a) → f(a, b)
f(a, b) → f(s(a), c)
f(s(X), c) → f(X, c)
f(c, c) → f(a, a)
f(a, a) → f(a, b) [1]
f(a, b) → f(s(a), c) [1]
f(s(X), c) → f(X, c) [1]
f(c, c) → f(a, a) [1]
f(a, a) → f(a, b) [1]
f(a, b) → f(s(a), c) [1]
f(s(X), c) → f(X, c) [1]
f(c, c) → f(a, a) [1]
f :: a:b:s:c → a:b:s:c → f a :: a:b:s:c b :: a:b:s:c s :: a:b:s:c → a:b:s:c c :: a:b:s:c |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
f
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
a => 0
b => 1
c => 2
const => 0
f(z, z') -{ 1 }→ f(X, 2) :|: z = 1 + X, z' = 2, X >= 0
f(z, z') -{ 1 }→ f(0, 1) :|: z = 0, z' = 0
f(z, z') -{ 1 }→ f(0, 0) :|: z = 2, z' = 2
f(z, z') -{ 1 }→ f(1 + 0, 2) :|: z' = 1, z = 0
f(z, z') -{ 1 }→ f(0, 1) :|: z = 0, z' = 0
f(z, z') -{ 1 }→ f(0, 0) :|: z = 2, z' = 2
f(z, z') -{ 1 }→ f(z - 1, 2) :|: z' = 2, z - 1 >= 0
f(z, z') -{ 1 }→ f(1 + 0, 2) :|: z' = 1, z = 0
{ f } |
f(z, z') -{ 1 }→ f(0, 1) :|: z = 0, z' = 0
f(z, z') -{ 1 }→ f(0, 0) :|: z = 2, z' = 2
f(z, z') -{ 1 }→ f(z - 1, 2) :|: z' = 2, z - 1 >= 0
f(z, z') -{ 1 }→ f(1 + 0, 2) :|: z' = 1, z = 0
f(z, z') -{ 1 }→ f(0, 1) :|: z = 0, z' = 0
f(z, z') -{ 1 }→ f(0, 0) :|: z = 2, z' = 2
f(z, z') -{ 1 }→ f(z - 1, 2) :|: z' = 2, z - 1 >= 0
f(z, z') -{ 1 }→ f(1 + 0, 2) :|: z' = 1, z = 0
f: runtime: ?, size: O(1) [0] |
f(z, z') -{ 1 }→ f(0, 1) :|: z = 0, z' = 0
f(z, z') -{ 1 }→ f(0, 0) :|: z = 2, z' = 2
f(z, z') -{ 1 }→ f(z - 1, 2) :|: z' = 2, z - 1 >= 0
f(z, z') -{ 1 }→ f(1 + 0, 2) :|: z' = 1, z = 0
f: runtime: O(n1) [10 + 4·z], size: O(1) [0] |