* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L)))
            ifselsort(true(),cons(N,L)) -> cons(N,selsort(L))
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
            selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L))
            selsort(nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,ifmin,ifrepl,ifselsort,le,min,replace
            ,selsort} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L)))
            ifselsort(true(),cons(N,L)) -> cons(N,selsort(L))
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
            selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L))
            selsort(nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,ifmin,ifrepl,ifselsort,le,min,replace
            ,selsort} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          eq(x,y){x -> s(x),y -> s(y)} =
            eq(s(x),s(y)) ->^+ eq(x,y)
              = C[eq(x,y) = eq(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L)))
            ifselsort(true(),cons(N,L)) -> cons(N,selsort(L))
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
            selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L))
            selsort(nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq,ifmin,ifrepl,ifselsort,le,min,replace
            ,selsort} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          eq#(0(),0()) -> c_1()
          eq#(0(),s(Y)) -> c_2()
          eq#(s(X),0()) -> c_3()
          eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          ifrepl#(true(),N,M,cons(K,L)) -> c_8()
          ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                              ,selsort#(replace(min(cons(N,L)),N,L))
                                              ,replace#(min(cons(N,L)),N,L)
                                              ,min#(cons(N,L)))
          ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          le#(0(),Y) -> c_11()
          le#(s(X),0()) -> c_12()
          le#(s(X),s(Y)) -> c_13(le#(X,Y))
          min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          min#(cons(0(),nil())) -> c_15()
          min#(cons(s(N),nil())) -> c_16()
          replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
          replace#(N,M,nil()) -> c_18()
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                     ,eq#(N,min(cons(N,L)))
                                     ,min#(cons(N,L)))
          selsort#(nil()) -> c_20()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(Y)) -> c_2()
            eq#(s(X),0()) -> c_3()
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifrepl#(true(),N,M,cons(K,L)) -> c_8()
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(0(),Y) -> c_11()
            le#(s(X),0()) -> c_12()
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            min#(cons(0(),nil())) -> c_15()
            min#(cons(s(N),nil())) -> c_16()
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            replace#(N,M,nil()) -> c_18()
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
            selsort#(nil()) -> c_20()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            ifselsort(false(),cons(N,L)) -> cons(min(cons(N,L)),selsort(replace(min(cons(N,L)),N,L)))
            ifselsort(true(),cons(N,L)) -> cons(N,selsort(L))
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
            selsort(cons(N,L)) -> ifselsort(eq(N,min(cons(N,L))),cons(N,L))
            selsort(nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          eq(0(),0()) -> true()
          eq(0(),s(Y)) -> false()
          eq(s(X),0()) -> false()
          eq(s(X),s(Y)) -> eq(X,Y)
          ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
          ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
          ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
          ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
          le(0(),Y) -> true()
          le(s(X),0()) -> false()
          le(s(X),s(Y)) -> le(X,Y)
          min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
          min(cons(0(),nil())) -> 0()
          min(cons(s(N),nil())) -> s(N)
          replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
          replace(N,M,nil()) -> nil()
          eq#(0(),0()) -> c_1()
          eq#(0(),s(Y)) -> c_2()
          eq#(s(X),0()) -> c_3()
          eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          ifrepl#(true(),N,M,cons(K,L)) -> c_8()
          ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                              ,selsort#(replace(min(cons(N,L)),N,L))
                                              ,replace#(min(cons(N,L)),N,L)
                                              ,min#(cons(N,L)))
          ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          le#(0(),Y) -> c_11()
          le#(s(X),0()) -> c_12()
          le#(s(X),s(Y)) -> c_13(le#(X,Y))
          min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          min#(cons(0(),nil())) -> c_15()
          min#(cons(s(N),nil())) -> c_16()
          replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
          replace#(N,M,nil()) -> c_18()
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                     ,eq#(N,min(cons(N,L)))
                                     ,min#(cons(N,L)))
          selsort#(nil()) -> c_20()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(Y)) -> c_2()
            eq#(s(X),0()) -> c_3()
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifrepl#(true(),N,M,cons(K,L)) -> c_8()
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(0(),Y) -> c_11()
            le#(s(X),0()) -> c_12()
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            min#(cons(0(),nil())) -> c_15()
            min#(cons(s(N),nil())) -> c_16()
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            replace#(N,M,nil()) -> c_18()
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
            selsort#(nil()) -> c_20()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,8,11,12,15,16,18,20}
        by application of
          Pre({1,2,3,8,11,12,15,16,18,20}) = {4,5,6,7,9,10,13,14,17,19}.
        Here rules are labelled as follows:
          1: eq#(0(),0()) -> c_1()
          2: eq#(0(),s(Y)) -> c_2()
          3: eq#(s(X),0()) -> c_3()
          4: eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          5: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          6: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          7: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          8: ifrepl#(true(),N,M,cons(K,L)) -> c_8()
          9: ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                 ,selsort#(replace(min(cons(N,L)),N,L))
                                                 ,replace#(min(cons(N,L)),N,L)
                                                 ,min#(cons(N,L)))
          10: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          11: le#(0(),Y) -> c_11()
          12: le#(s(X),0()) -> c_12()
          13: le#(s(X),s(Y)) -> c_13(le#(X,Y))
          14: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          15: min#(cons(0(),nil())) -> c_15()
          16: min#(cons(s(N),nil())) -> c_16()
          17: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
          18: replace#(N,M,nil()) -> c_18()
          19: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                         ,eq#(N,min(cons(N,L)))
                                         ,min#(cons(N,L)))
          20: selsort#(nil()) -> c_20()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak DPs:
            eq#(0(),0()) -> c_1()
            eq#(0(),s(Y)) -> c_2()
            eq#(s(X),0()) -> c_3()
            ifrepl#(true(),N,M,cons(K,L)) -> c_8()
            le#(0(),Y) -> c_11()
            le#(s(X),0()) -> c_12()
            min#(cons(0(),nil())) -> c_15()
            min#(cons(s(N),nil())) -> c_16()
            replace#(N,M,nil()) -> c_18()
            selsort#(nil()) -> c_20()
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
             -->_1 eq#(s(X),0()) -> c_3():13
             -->_1 eq#(0(),s(Y)) -> c_2():12
             -->_1 eq#(0(),0()) -> c_1():11
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          2:S:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_1 min#(cons(s(N),nil())) -> c_16():18
             -->_1 min#(cons(0(),nil())) -> c_15():17
          
          3:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_1 min#(cons(s(N),nil())) -> c_16():18
             -->_1 min#(cons(0(),nil())) -> c_15():17
          
          4:S:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
             -->_1 replace#(N,M,nil()) -> c_18():19
          
          5:S:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_2 selsort#(nil()) -> c_20():20
             -->_3 replace#(N,M,nil()) -> c_18():19
             -->_4 min#(cons(s(N),nil())) -> c_16():18
             -->_1 min#(cons(s(N),nil())) -> c_16():18
             -->_4 min#(cons(0(),nil())) -> c_15():17
             -->_1 min#(cons(0(),nil())) -> c_15():17
          
          6:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
             -->_1 selsort#(nil()) -> c_20():20
          
          7:S:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),0()) -> c_12():16
             -->_1 le#(0(),Y) -> c_11():15
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
          
          8:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_2 le#(s(X),0()) -> c_12():16
             -->_2 le#(0(),Y) -> c_11():15
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):3
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):2
          
          9:S:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_1 ifrepl#(true(),N,M,cons(K,L)) -> c_8():14
             -->_2 eq#(s(X),0()) -> c_3():13
             -->_2 eq#(0(),s(Y)) -> c_2():12
             -->_2 eq#(0(),0()) -> c_1():11
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):4
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          10:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                          ,eq#(N,min(cons(N,L)))
                                          ,min#(cons(N,L)))
             -->_3 min#(cons(s(N),nil())) -> c_16():18
             -->_3 min#(cons(0(),nil())) -> c_15():17
             -->_2 eq#(s(X),0()) -> c_3():13
             -->_2 eq#(0(),s(Y)) -> c_2():12
             -->_2 eq#(0(),0()) -> c_1():11
             -->_3 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):6
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):5
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          11:W:eq#(0(),0()) -> c_1()
             
          
          12:W:eq#(0(),s(Y)) -> c_2()
             
          
          13:W:eq#(s(X),0()) -> c_3()
             
          
          14:W:ifrepl#(true(),N,M,cons(K,L)) -> c_8()
             
          
          15:W:le#(0(),Y) -> c_11()
             
          
          16:W:le#(s(X),0()) -> c_12()
             
          
          17:W:min#(cons(0(),nil())) -> c_15()
             
          
          18:W:min#(cons(s(N),nil())) -> c_16()
             
          
          19:W:replace#(N,M,nil()) -> c_18()
             
          
          20:W:selsort#(nil()) -> c_20()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          20: selsort#(nil()) -> c_20()
          19: replace#(N,M,nil()) -> c_18()
          14: ifrepl#(true(),N,M,cons(K,L)) -> c_8()
          17: min#(cons(0(),nil())) -> c_15()
          18: min#(cons(s(N),nil())) -> c_16()
          15: le#(0(),Y) -> c_11()
          16: le#(s(X),0()) -> c_12()
          11: eq#(0(),0()) -> c_1()
          12: eq#(0(),s(Y)) -> c_2()
          13: eq#(s(X),0()) -> c_3()
** Step 1.b:5: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          - Weak DPs:
              ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
              ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              le#(s(X),s(Y)) -> c_13(le#(X,Y))
              min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                         ,eq#(N,min(cons(N,L)))
                                         ,min#(cons(N,L)))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
        
        Problem (S)
          - Strict DPs:
              ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
              ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              le#(s(X),s(Y)) -> c_13(le#(X,Y))
              min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                         ,eq#(N,min(cons(N,L)))
                                         ,min#(cons(N,L)))
          - Weak DPs:
              eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
*** Step 1.b:5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          2:W:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
          
          3:W:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
          
          4:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
          
          5:W:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
          
          6:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
          
          7:W:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
          
          8:W:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):2
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):3
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
          
          9:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):4
          
          10:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                          ,eq#(N,min(cons(N,L)))
                                          ,min#(cons(N,L)))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):5
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):6
             -->_3 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          8: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          3: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          7: le#(s(X),s(Y)) -> c_13(le#(X,Y))
*** Step 1.b:5.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          4:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
          
          5:W:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):9
          
          6:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):10
          
          9:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):4
          
          10:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                          ,eq#(N,min(cons(N,L)))
                                          ,min#(cons(N,L)))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):5
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
*** Step 1.b:5.a:3: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
          ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        and a lower component
          eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
        Further, following extension rules are added to the lower component.
          ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
          ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
          ifselsort#(true(),cons(N,L)) -> selsort#(L)
          selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
          selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
**** Step 1.b:5.a:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        - Weak DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
          
        Consider the set of all dependency pairs
          1: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                 ,replace#(min(cons(N,L)),N,L))
          2: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
          3: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:5.a:3.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        - Weak DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                p(cons) = [1] x2 + [4]                  
                  p(eq) = [2] x1 + [0]                  
               p(false) = [0]                           
               p(ifmin) = [1] x1 + [1] x2 + [0]         
              p(ifrepl) = [1] x4 + [0]                  
           p(ifselsort) = [1] x2 + [1]                  
                  p(le) = [0]                           
                 p(min) = [0]                           
                 p(nil) = [0]                           
             p(replace) = [1] x3 + [0]                  
                   p(s) = [0]                           
             p(selsort) = [1]                           
                p(true) = [4]                           
                 p(eq#) = [0]                           
              p(ifmin#) = [1] x1 + [2]                  
             p(ifrepl#) = [1] x1 + [1] x2 + [1] x3 + [0]
          p(ifselsort#) = [1] x2 + [2]                  
                 p(le#) = [1] x1 + [2]                  
                p(min#) = [1]                           
            p(replace#) = [0]                           
            p(selsort#) = [1] x1 + [4]                  
                 p(c_1) = [1]                           
                 p(c_2) = [1]                           
                 p(c_3) = [0]                           
                 p(c_4) = [1] x1 + [4]                  
                 p(c_5) = [4] x1 + [0]                  
                 p(c_6) = [1] x1 + [1]                  
                 p(c_7) = [1]                           
                 p(c_8) = [4]                           
                 p(c_9) = [1] x1 + [1] x2 + [2]         
                p(c_10) = [1] x1 + [0]                  
                p(c_11) = [1]                           
                p(c_12) = [0]                           
                p(c_13) = [4]                           
                p(c_14) = [2] x1 + [1]                  
                p(c_15) = [2]                           
                p(c_16) = [0]                           
                p(c_17) = [4] x2 + [4]                  
                p(c_18) = [0]                           
                p(c_19) = [1] x1 + [4] x2 + [0]         
                p(c_20) = [0]                           
        
        Following rules are strictly oriented:
        selsort#(cons(N,L)) = [1] L + [8]                                                           
                            > [1] L + [6]                                                           
                            = c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        
        
        Following rules are (at-least) weakly oriented:
        ifselsort#(false(),cons(N,L)) =  [1] L + [6]                                                            
                                      >= [1] L + [6]                                                            
                                      =  c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
        
         ifselsort#(true(),cons(N,L)) =  [1] L + [6]                                                            
                                      >= [1] L + [4]                                                            
                                      =  c_10(selsort#(L))                                                      
        
        ifrepl(false(),N,M,cons(K,L)) =  [1] L + [4]                                                            
                                      >= [1] L + [4]                                                            
                                      =  cons(K,replace(N,M,L))                                                 
        
         ifrepl(true(),N,M,cons(K,L)) =  [1] L + [4]                                                            
                                      >= [1] L + [4]                                                            
                                      =  cons(M,L)                                                              
        
               replace(N,M,cons(K,L)) =  [1] L + [4]                                                            
                                      >= [1] L + [4]                                                            
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))                                          
        
                   replace(N,M,nil()) =  [0]                                                                    
                                      >= [0]                                                                    
                                      =  nil()                                                                  
        
***** Step 1.b:5.a:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
        - Weak DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:5.a:3.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L)))):3
          
          2:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L)))):3
          
          3:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):2
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                 ,replace#(min(cons(N,L)),N,L))
          3: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),eq#(N,min(cons(N,L))))
          2: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
***** Step 1.b:5.a:3.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:5.a:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:5.a:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_7) = {1},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {ifmin,ifrepl,min,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                 
                          [2]                                 
                p(cons) = [0 0] x1 + [0 2] x2 + [0]           
                          [0 1]      [0 1]      [0]           
                  p(eq) = [0 0] x1 + [0 1] x2 + [0]           
                          [0 1]      [0 0]      [2]           
               p(false) = [0]                                 
                          [0]                                 
               p(ifmin) = [0 0] x2 + [0]                      
                          [0 1]      [0]                      
              p(ifrepl) = [0 2] x3 + [1 1] x4 + [0]           
                          [0 1]      [0 1]      [0]           
           p(ifselsort) = [0 2] x2 + [2]                      
                          [1 0]      [0]                      
                  p(le) = [1 0] x1 + [0 3] x2 + [0]           
                          [2 1]      [1 0]      [3]           
                 p(min) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
                 p(nil) = [0]                                 
                          [0]                                 
             p(replace) = [0 2] x2 + [1 2] x3 + [0]           
                          [0 1]      [0 1]      [0]           
                   p(s) = [0 0] x1 + [0]                      
                          [0 1]      [2]                      
             p(selsort) = [2 1] x1 + [1]                      
                          [0 0]      [0]                      
                p(true) = [0]                                 
                          [0]                                 
                 p(eq#) = [0 2] x2 + [0]                      
                          [0 0]      [1]                      
              p(ifmin#) = [0 0] x1 + [1 2] x2 + [0]           
                          [0 2]      [0 1]      [0]           
             p(ifrepl#) = [0 0] x2 + [0 1] x3 + [1 0] x4 + [0]
                          [3 1]      [0 2]      [0 2]      [0]
          p(ifselsort#) = [0 2] x2 + [0]                      
                          [0 0]      [1]                      
                 p(le#) = [0 1] x1 + [0 0] x2 + [2]           
                          [0 0]      [0 2]      [0]           
                p(min#) = [1]                                 
                          [0]                                 
            p(replace#) = [0 1] x2 + [0 2] x3 + [0]           
                          [0 0]      [0 0]      [0]           
            p(selsort#) = [0 2] x1 + [0]                      
                          [0 0]      [1]                      
                 p(c_1) = [0]                                 
                          [0]                                 
                 p(c_2) = [0]                                 
                          [0]                                 
                 p(c_3) = [0]                                 
                          [0]                                 
                 p(c_4) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_5) = [0 2] x1 + [0]                      
                          [0 1]      [0]                      
                 p(c_6) = [2]                                 
                          [2]                                 
                 p(c_7) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_8) = [0]                                 
                          [1]                                 
                 p(c_9) = [1 0] x1 + [0 0] x2 + [0]           
                          [0 0]      [0 1]      [0]           
                p(c_10) = [1]                                 
                          [1]                                 
                p(c_11) = [0]                                 
                          [1]                                 
                p(c_12) = [1]                                 
                          [0]                                 
                p(c_13) = [1]                                 
                          [0]                                 
                p(c_14) = [1 2] x2 + [0]                      
                          [1 2]      [0]                      
                p(c_15) = [0]                                 
                          [2]                                 
                p(c_16) = [2]                                 
                          [0]                                 
                p(c_17) = [1 0] x1 + [1 0] x2 + [0]           
                          [0 0]      [0 0]      [0]           
                p(c_18) = [1]                                 
                          [0]                                 
                p(c_19) = [2 2] x1 + [0]                      
                          [0 2]      [1]                      
                p(c_20) = [1]                                 
                          [1]                                 
        
        Following rules are strictly oriented:
        eq#(s(X),s(Y)) = [0 2] Y + [4]
                         [0 0]     [1]
                       > [0 2] Y + [0]
                         [0 0]     [0]
                       = c_4(eq#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
          ifrepl#(false(),N,M,cons(K,L)) =  [0 0] K + [0 2] L + [0 1] M + [0 0] N + [0]  
                                            [0 2]     [0 2]     [0 2]     [3 1]     [0]  
                                         >= [0 2] L + [0 1] M + [0]                      
                                            [0 0]     [0 0]     [0]                      
                                         =  c_7(replace#(N,M,L))                         
        
           ifselsort#(false(),cons(N,L)) =  [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         >= [0 2] L + [0 1] N + [0]                      
                                            [0 0]     [0 0]     [0]                      
                                         =  replace#(min(cons(N,L)),N,L)                 
        
           ifselsort#(false(),cons(N,L)) =  [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         >= [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         =  selsort#(replace(min(cons(N,L)),N,L))        
        
            ifselsort#(true(),cons(N,L)) =  [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         >= [0 2] L + [0]                                
                                            [0 0]     [1]                                
                                         =  selsort#(L)                                  
        
                 replace#(N,M,cons(K,L)) =  [0 2] K + [0 2] L + [0 1] M + [0]            
                                            [0 0]     [0 0]     [0 0]     [0]            
                                         >= [0 2] K + [0 2] L + [0 1] M + [0]            
                                            [0 0]     [0 0]     [0 0]     [0]            
                                         =  c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
        
                     selsort#(cons(N,L)) =  [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         >= [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         =  eq#(N,min(cons(N,L)))                        
        
                     selsort#(cons(N,L)) =  [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         >= [0 2] L + [0 2] N + [0]                      
                                            [0 0]     [0 0]     [1]                      
                                         =  ifselsort#(eq(N,min(cons(N,L))),cons(N,L))   
        
        ifmin(false(),cons(N,cons(M,L))) =  [0 0] L + [0 0] M + [0 0] N + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 0] L + [0 0] M + [0]                      
                                            [0 1]     [0 1]     [0]                      
                                         =  min(cons(M,L))                               
        
         ifmin(true(),cons(N,cons(M,L))) =  [0 0] L + [0 0] M + [0 0] N + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 0] L + [0 0] N + [0]                      
                                            [0 1]     [0 1]     [0]                      
                                         =  min(cons(N,L))                               
        
           ifrepl(false(),N,M,cons(K,L)) =  [0 1] K + [0 3] L + [0 2] M + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 0] K + [0 2] L + [0 2] M + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         =  cons(K,replace(N,M,L))                       
        
            ifrepl(true(),N,M,cons(K,L)) =  [0 1] K + [0 3] L + [0 2] M + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 2] L + [0 0] M + [0]                      
                                            [0 1]     [0 1]     [0]                      
                                         =  cons(M,L)                                    
        
                  min(cons(N,cons(M,L))) =  [0 0] L + [0 0] M + [0 0] N + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 0] L + [0 0] M + [0 0] N + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         =  ifmin(le(N,M),cons(N,cons(M,L)))             
        
                    min(cons(0(),nil())) =  [0]                                          
                                            [2]                                          
                                         >= [0]                                          
                                            [2]                                          
                                         =  0()                                          
        
                   min(cons(s(N),nil())) =  [0 0] N + [0]                                
                                            [0 1]     [2]                                
                                         >= [0 0] N + [0]                                
                                            [0 1]     [2]                                
                                         =  s(N)                                         
        
                  replace(N,M,cons(K,L)) =  [0 2] K + [0 4] L + [0 2] M + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         >= [0 1] K + [0 3] L + [0 2] M + [0]            
                                            [0 1]     [0 1]     [0 1]     [0]            
                                         =  ifrepl(eq(N,K),N,M,cons(K,L))                
        
                      replace(N,M,nil()) =  [0 2] M + [0]                                
                                            [0 1]     [0]                                
                                         >= [0]                                          
                                            [0]                                          
                                         =  nil()                                        
        
***** Step 1.b:5.a:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:5.a:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          2:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):6
          
          3:W:ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):6
          
          4:W:ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
             -->_1 selsort#(cons(N,L)) -> eq#(N,min(cons(N,L))):7
          
          5:W:ifselsort#(true(),cons(N,L)) -> selsort#(L)
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
             -->_1 selsort#(cons(N,L)) -> eq#(N,min(cons(N,L))):7
          
          6:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):2
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          7:W:selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):1
          
          8:W:selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
             -->_1 ifselsort#(true(),cons(N,L)) -> selsort#(L):5
             -->_1 ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)):4
             -->_1 ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
          8: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
          5: ifselsort#(true(),cons(N,L)) -> selsort#(L)
          7: selsort#(cons(N,L)) -> eq#(N,min(cons(N,L)))
          3: ifselsort#(false(),cons(N,L)) -> replace#(min(cons(N,L)),N,L)
          2: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          6: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
          1: eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
***** Step 1.b:5.a:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak DPs:
            eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          2:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          3:S:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):8
          
          4:S:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):9
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):8
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          5:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):9
          
          6:S:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          7:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):2
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):1
          
          8:S:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):10
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):3
          
          9:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                         ,eq#(N,min(cons(N,L)))
                                         ,min#(cons(N,L)))
             -->_2 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):10
             -->_3 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):5
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):4
          
          10:W:eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
             -->_1 eq#(s(X),s(Y)) -> c_4(eq#(X,Y)):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: eq#(s(X),s(Y)) -> c_4(eq#(X,Y))
*** Step 1.b:5.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                       ,eq#(N,min(cons(N,L)))
                                       ,min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/2,c_18/0,c_19/3,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          2:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          3:S:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):8
          
          4:S:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):9
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K)):8
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          5:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                              ,eq#(N,min(cons(N,L)))
                                              ,min#(cons(N,L))):9
          
          6:S:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          7:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):2
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):1
          
          8:S:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)),eq#(N,K))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):3
          
          9:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
                                         ,eq#(N,min(cons(N,L)))
                                         ,min#(cons(N,L)))
             -->_3 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):5
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
*** Step 1.b:5.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
              ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
              le#(s(X),s(Y)) -> c_13(le#(X,Y))
              min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          - Weak DPs:
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
        
        Problem (S)
          - Strict DPs:
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
          - Weak DPs:
              ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
              ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
              le#(s(X),s(Y)) -> c_13(le#(X,Y))
              min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
**** Step 1.b:5.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          2:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          3:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):8
          
          4:W:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):9
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):8
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          5:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):9
          
          6:S:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          7:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):1
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):2
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          8:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):3
          
          9:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):4
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):5
             -->_2 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          8: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
**** Step 1.b:5.b:3.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          2:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          4:W:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):9
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
          5:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):9
          
          6:S:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          7:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):1
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):2
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):6
          
          9:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):4
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):5
             -->_2 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):7
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                              ,selsort#(replace(min(cons(N,L)),N,L))
                                              ,min#(cons(N,L)))
**** Step 1.b:5.b:3.a:3: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                              ,selsort#(replace(min(cons(N,L)),N,L))
                                              ,min#(cons(N,L)))
          ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        and a lower component
          ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          le#(s(X),s(Y)) -> c_13(le#(X,Y))
          min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        Further, following extension rules are added to the lower component.
          ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
          ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
          ifselsort#(true(),cons(N,L)) -> selsort#(L)
          selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
          selsort#(cons(N,L)) -> min#(cons(N,L))
***** Step 1.b:5.b:3.a:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                 ,selsort#(replace(min(cons(N,L)),N,L))
                                                 ,min#(cons(N,L)))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:5.b:3.a:3.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {2},
          uargs(c_10) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                  
                p(cons) = [1] x1 + [1] x2 + [1]
                  p(eq) = [4] x1 + [0]         
               p(false) = [0]                  
               p(ifmin) = [1]                  
              p(ifrepl) = [1] x3 + [1] x4 + [0]
           p(ifselsort) = [2] x2 + [1]         
                  p(le) = [0]                  
                 p(min) = [0]                  
                 p(nil) = [2]                  
             p(replace) = [1] x2 + [1] x3 + [0]
                   p(s) = [0]                  
             p(selsort) = [1] x1 + [1]         
                p(true) = [0]                  
                 p(eq#) = [1] x2 + [0]         
              p(ifmin#) = [2]                  
             p(ifrepl#) = [1] x1 + [0]         
          p(ifselsort#) = [4] x2 + [2]         
                 p(le#) = [2]                  
                p(min#) = [5] x1 + [3]         
            p(replace#) = [4] x2 + [0]         
            p(selsort#) = [4] x1 + [2]         
                 p(c_1) = [0]                  
                 p(c_2) = [0]                  
                 p(c_3) = [0]                  
                 p(c_4) = [1] x1 + [1]         
                 p(c_5) = [2] x1 + [0]         
                 p(c_6) = [1] x1 + [1]         
                 p(c_7) = [0]                  
                 p(c_8) = [0]                  
                 p(c_9) = [1] x2 + [0]         
                p(c_10) = [1] x1 + [4]         
                p(c_11) = [1]                  
                p(c_12) = [2]                  
                p(c_13) = [4] x1 + [0]         
                p(c_14) = [1] x1 + [0]         
                p(c_15) = [2]                  
                p(c_16) = [1]                  
                p(c_17) = [0]                  
                p(c_18) = [2]                  
                p(c_19) = [1] x1 + [0]         
                p(c_20) = [2]                  
        
        Following rules are strictly oriented:
        ifselsort#(false(),cons(N,L)) = [4] L + [4] N + [6]                                                       
                                      > [4] L + [4] N + [2]                                                       
                                      = c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
        
        
        Following rules are (at-least) weakly oriented:
         ifselsort#(true(),cons(N,L)) =  [4] L + [4] N + [6]                                             
                                      >= [4] L + [6]                                                     
                                      =  c_10(selsort#(L))                                               
        
                  selsort#(cons(N,L)) =  [4] L + [4] N + [6]                                             
                                      >= [4] L + [4] N + [6]                                             
                                      =  c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        
        ifrepl(false(),N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]                                     
                                      >= [1] K + [1] L + [1] M + [1]                                     
                                      =  cons(K,replace(N,M,L))                                          
        
         ifrepl(true(),N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]                                     
                                      >= [1] L + [1] M + [1]                                             
                                      =  cons(M,L)                                                       
        
               replace(N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]                                     
                                      >= [1] K + [1] L + [1] M + [1]                                     
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))                                   
        
                   replace(N,M,nil()) =  [1] M + [2]                                                     
                                      >= [2]                                                             
                                      =  nil()                                                           
        
****** Step 1.b:5.b:3.a:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:5.b:3.a:3.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
          
        Consider the set of all dependency pairs
          1: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
          2: ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                 ,selsort#(replace(min(cons(N,L)),N,L))
                                                 ,min#(cons(N,L)))
          3: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:5.b:3.a:3.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {2},
          uargs(c_10) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                  
                p(cons) = [1] x2 + [4]         
                  p(eq) = [4] x1 + [0]         
               p(false) = [0]                  
               p(ifmin) = [2] x1 + [1]         
              p(ifrepl) = [1] x4 + [0]         
           p(ifselsort) = [2] x1 + [2] x2 + [1]
                  p(le) = [1] x2 + [5]         
                 p(min) = [0]                  
                 p(nil) = [4]                  
             p(replace) = [1] x3 + [0]         
                   p(s) = [1] x1 + [0]         
             p(selsort) = [0]                  
                p(true) = [0]                  
                 p(eq#) = [4] x1 + [1] x2 + [4]
              p(ifmin#) = [1] x1 + [0]         
             p(ifrepl#) = [4] x3 + [1] x4 + [4]
          p(ifselsort#) = [2] x2 + [0]         
                 p(le#) = [1] x1 + [0]         
                p(min#) = [1]                  
            p(replace#) = [4]                  
            p(selsort#) = [2] x1 + [5]         
                 p(c_1) = [1]                  
                 p(c_2) = [0]                  
                 p(c_3) = [1]                  
                 p(c_4) = [1]                  
                 p(c_5) = [2]                  
                 p(c_6) = [1]                  
                 p(c_7) = [2] x1 + [4]         
                 p(c_8) = [0]                  
                 p(c_9) = [1] x1 + [1] x2 + [1]
                p(c_10) = [1] x1 + [3]         
                p(c_11) = [0]                  
                p(c_12) = [2]                  
                p(c_13) = [4] x1 + [1]         
                p(c_14) = [1] x1 + [1]         
                p(c_15) = [1]                  
                p(c_16) = [0]                  
                p(c_17) = [1]                  
                p(c_18) = [1]                  
                p(c_19) = [1] x1 + [4]         
                p(c_20) = [2]                  
        
        Following rules are strictly oriented:
        selsort#(cons(N,L)) = [2] L + [13]                                                    
                            > [2] L + [12]                                                    
                            = c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        
        
        Following rules are (at-least) weakly oriented:
        ifselsort#(false(),cons(N,L)) =  [2] L + [8]                                                               
                                      >= [2] L + [7]                                                               
                                      =  c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
        
         ifselsort#(true(),cons(N,L)) =  [2] L + [8]                                                               
                                      >= [2] L + [8]                                                               
                                      =  c_10(selsort#(L))                                                         
        
        ifrepl(false(),N,M,cons(K,L)) =  [1] L + [4]                                                               
                                      >= [1] L + [4]                                                               
                                      =  cons(K,replace(N,M,L))                                                    
        
         ifrepl(true(),N,M,cons(K,L)) =  [1] L + [4]                                                               
                                      >= [1] L + [4]                                                               
                                      =  cons(M,L)                                                                 
        
               replace(N,M,cons(K,L)) =  [1] L + [4]                                                               
                                      >= [1] L + [4]                                                               
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))                                             
        
                   replace(N,M,nil()) =  [4]                                                                       
                                      >= [4]                                                                       
                                      =  nil()                                                                     
        
******* Step 1.b:5.b:3.a:3.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:5.b:3.a:3.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L)),selsort#(replace(min(cons(N,L)),N,L)),min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):3
          
          2:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):3
          
          3:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):2
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,min#(cons(N,L))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                 ,selsort#(replace(min(cons(N,L)),N,L))
                                                 ,min#(cons(N,L)))
          3: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
          2: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
******* Step 1.b:5.b:3.a:3.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

***** Step 1.b:5.b:3.a:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          3: le#(s(X),s(Y)) -> c_13(le#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:5.b:3.a:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_13) = {1},
          uargs(c_14) = {1,2}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                          
                          [0]                          
                          [1]                          
                p(cons) = [0 0 0]      [0 1 0]      [1]
                          [0 0 0] x1 + [0 0 1] x2 + [0]
                          [0 0 1]      [0 0 1]      [1]
                  p(eq) = [0 0 1]      [1]             
                          [0 0 0] x1 + [0]             
                          [1 0 0]      [0]             
               p(false) = [0]                          
                          [0]                          
                          [0]                          
               p(ifmin) = [0 0 1]      [0]             
                          [0 0 1] x2 + [0]             
                          [0 0 0]      [0]             
              p(ifrepl) = [0 1 1]      [1 0 0]      [0]
                          [0 1 1] x3 + [0 1 0] x4 + [0]
                          [0 0 1]      [0 0 1]      [0]
           p(ifselsort) = [0]                          
                          [0]                          
                          [0]                          
                  p(le) = [0 0 0]      [0]             
                          [0 0 0] x2 + [0]             
                          [0 0 1]      [0]             
                 p(min) = [0 0 0]      [0]             
                          [0 0 1] x1 + [0]             
                          [0 0 0]      [0]             
                 p(nil) = [0]                          
                          [1]                          
                          [0]                          
             p(replace) = [0 1 1]      [1 0 0]      [0]
                          [0 1 1] x2 + [0 1 0] x3 + [0]
                          [0 0 1]      [0 0 1]      [0]
                   p(s) = [0 1 0]      [1]             
                          [0 0 1] x1 + [0]             
                          [0 0 1]      [1]             
             p(selsort) = [0]                          
                          [0]                          
                          [0]                          
                p(true) = [0]                          
                          [0]                          
                          [0]                          
                 p(eq#) = [0]                          
                          [0]                          
                          [0]                          
              p(ifmin#) = [1 0 0]      [1]             
                          [0 0 1] x2 + [0]             
                          [1 0 0]      [0]             
             p(ifrepl#) = [0]                          
                          [0]                          
                          [0]                          
          p(ifselsort#) = [0 0 1]      [1]             
                          [0 0 0] x2 + [0]             
                          [0 0 1]      [0]             
                 p(le#) = [0 0 0]      [0 0 1]      [0]
                          [0 1 0] x1 + [0 0 0] x2 + [0]
                          [0 0 0]      [0 1 0]      [0]
                p(min#) = [0 1 0]      [1]             
                          [0 0 0] x1 + [0]             
                          [0 1 0]      [1]             
            p(replace#) = [0]                          
                          [0]                          
                          [0]                          
            p(selsort#) = [0 0 1]      [1]             
                          [0 0 0] x1 + [0]             
                          [0 0 1]      [1]             
                 p(c_1) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_2) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_3) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_4) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_5) = [1 0 0]      [0]             
                          [0 0 1] x1 + [0]             
                          [1 0 0]      [0]             
                 p(c_6) = [1 0 0]      [1]             
                          [1 0 0] x1 + [0]             
                          [0 0 1]      [0]             
                 p(c_7) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_8) = [0]                          
                          [0]                          
                          [0]                          
                 p(c_9) = [0]                          
                          [0]                          
                          [0]                          
                p(c_10) = [0]                          
                          [0]                          
                          [0]                          
                p(c_11) = [0]                          
                          [0]                          
                          [0]                          
                p(c_12) = [0]                          
                          [0]                          
                          [0]                          
                p(c_13) = [1 0 0]      [0]             
                          [0 0 0] x1 + [0]             
                          [1 0 0]      [0]             
                p(c_14) = [1 0 0]      [1 0 0]      [0]
                          [0 0 0] x1 + [0 0 0] x2 + [0]
                          [0 0 1]      [1 0 0]      [0]
                p(c_15) = [0]                          
                          [0]                          
                          [0]                          
                p(c_16) = [0]                          
                          [0]                          
                          [0]                          
                p(c_17) = [0]                          
                          [0]                          
                          [0]                          
                p(c_18) = [0]                          
                          [0]                          
                          [0]                          
                p(c_19) = [0]                          
                          [0]                          
                          [0]                          
                p(c_20) = [0]                          
                          [0]                          
                          [0]                          
        
        Following rules are strictly oriented:
        ifmin#(false(),cons(N,cons(M,L))) = [0 0 1]     [0 0 0]     [0 0 0]     [2]
                                            [0 0 1] L + [0 0 1] M + [0 0 1] N + [2]
                                            [0 0 1]     [0 0 0]     [0 0 0]     [1]
                                          > [0 0 1]     [1]                        
                                            [0 0 1] L + [1]                        
                                            [0 0 1]     [1]                        
                                          = c_5(min#(cons(M,L)))                   
        
                           le#(s(X),s(Y)) = [0 0 0]     [0 0 1]     [1]            
                                            [0 0 1] X + [0 0 0] Y + [0]            
                                            [0 0 0]     [0 0 1]     [0]            
                                          > [0 0 1]     [0]                        
                                            [0 0 0] Y + [0]                        
                                            [0 0 1]     [0]                        
                                          = c_13(le#(X,Y))                         
        
        
        Following rules are (at-least) weakly oriented:
        ifmin#(true(),cons(N,cons(M,L))) =  [0 0 1]     [0 0 0]     [0 0 0]     [2]         
                                            [0 0 1] L + [0 0 1] M + [0 0 1] N + [2]         
                                            [0 0 1]     [0 0 0]     [0 0 0]     [1]         
                                         >= [0 0 1]     [2]                                 
                                            [0 0 1] L + [1]                                 
                                            [0 0 1]     [1]                                 
                                         =  c_6(min#(cons(N,L)))                            
        
           ifselsort#(false(),cons(N,L)) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         >= [0 0 1]     [1]                                 
                                            [0 0 0] L + [0]                                 
                                            [0 0 1]     [1]                                 
                                         =  min#(cons(N,L))                                 
        
           ifselsort#(false(),cons(N,L)) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         >= [0 0 1]     [0 0 1]     [1]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         =  selsort#(replace(min(cons(N,L)),N,L))           
        
            ifselsort#(true(),cons(N,L)) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         >= [0 0 1]     [1]                                 
                                            [0 0 0] L + [0]                                 
                                            [0 0 1]     [1]                                 
                                         =  selsort#(L)                                     
        
                 min#(cons(N,cons(M,L))) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] M + [0]                     
                                            [0 0 1]     [0 0 1]     [2]                     
                                         >= [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] M + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         =  c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        
                     selsort#(cons(N,L)) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [2]                     
                                         >= [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         =  ifselsort#(eq(N,min(cons(N,L))),cons(N,L))      
        
                     selsort#(cons(N,L)) =  [0 0 1]     [0 0 1]     [2]                     
                                            [0 0 0] L + [0 0 0] N + [0]                     
                                            [0 0 1]     [0 0 1]     [2]                     
                                         >= [0 0 1]     [1]                                 
                                            [0 0 0] L + [0]                                 
                                            [0 0 1]     [1]                                 
                                         =  min#(cons(N,L))                                 
        
           ifrepl(false(),N,M,cons(K,L)) =  [0 0 0]     [0 1 0]     [0 1 1]     [1]         
                                            [0 0 0] K + [0 0 1] L + [0 1 1] M + [0]         
                                            [0 0 1]     [0 0 1]     [0 0 1]     [1]         
                                         >= [0 0 0]     [0 1 0]     [0 1 1]     [1]         
                                            [0 0 0] K + [0 0 1] L + [0 0 1] M + [0]         
                                            [0 0 1]     [0 0 1]     [0 0 1]     [1]         
                                         =  cons(K,replace(N,M,L))                          
        
            ifrepl(true(),N,M,cons(K,L)) =  [0 0 0]     [0 1 0]     [0 1 1]     [1]         
                                            [0 0 0] K + [0 0 1] L + [0 1 1] M + [0]         
                                            [0 0 1]     [0 0 1]     [0 0 1]     [1]         
                                         >= [0 1 0]     [0 0 0]     [1]                     
                                            [0 0 1] L + [0 0 0] M + [0]                     
                                            [0 0 1]     [0 0 1]     [1]                     
                                         =  cons(M,L)                                       
        
                  replace(N,M,cons(K,L)) =  [0 0 0]     [0 1 0]     [0 1 1]     [1]         
                                            [0 0 0] K + [0 0 1] L + [0 1 1] M + [0]         
                                            [0 0 1]     [0 0 1]     [0 0 1]     [1]         
                                         >= [0 0 0]     [0 1 0]     [0 1 1]     [1]         
                                            [0 0 0] K + [0 0 1] L + [0 1 1] M + [0]         
                                            [0 0 1]     [0 0 1]     [0 0 1]     [1]         
                                         =  ifrepl(eq(N,K),N,M,cons(K,L))                   
        
                      replace(N,M,nil()) =  [0 1 1]     [0]                                 
                                            [0 1 1] M + [1]                                 
                                            [0 0 1]     [0]                                 
                                         >= [0]                                             
                                            [1]                                             
                                            [0]                                             
                                         =  nil()                                           
        
****** Step 1.b:5.b:3.a:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:5.b:3.a:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          2:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):3
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):1
          
          3:W:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          4:W:ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          5:W:ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):9
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
          
          6:W:ifselsort#(true(),cons(N,L)) -> selsort#(L)
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):9
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
          
          7:W:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):7
          
          8:W:selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
             -->_1 ifselsort#(true(),cons(N,L)) -> selsort#(L):6
             -->_1 ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)):5
             -->_1 ifselsort#(false(),cons(N,L)) -> min#(cons(N,L)):4
          
          9:W:selsort#(cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: le#(s(X),s(Y)) -> c_13(le#(X,Y))
****** Step 1.b:5.b:3.a:3.b:1.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          2:S:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):3
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):1
          
          3:W:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          4:W:ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
          5:W:ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):9
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
          
          6:W:ifselsort#(true(),cons(N,L)) -> selsort#(L)
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):9
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):8
          
          8:W:selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
             -->_1 ifselsort#(true(),cons(N,L)) -> selsort#(L):6
             -->_1 ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)):5
             -->_1 ifselsort#(false(),cons(N,L)) -> min#(cons(N,L)):4
          
          9:W:selsort#(cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
****** Step 1.b:5.b:3.a:3.b:1.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          
        The strictly oriented rules are moved into the weak component.
******* Step 1.b:5.b:3.a:3.b:1.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_14) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                p(cons) = [1] x2 + [2]                  
                  p(eq) = [1] x1 + [6]                  
               p(false) = [0]                           
               p(ifmin) = [4]                           
              p(ifrepl) = [1] x4 + [0]                  
           p(ifselsort) = [1]                           
                  p(le) = [1] x2 + [0]                  
                 p(min) = [0]                           
                 p(nil) = [0]                           
             p(replace) = [1] x3 + [0]                  
                   p(s) = [1]                           
             p(selsort) = [1]                           
                p(true) = [0]                           
                 p(eq#) = [4] x1 + [4] x2 + [1]         
              p(ifmin#) = [2] x2 + [0]                  
             p(ifrepl#) = [1] x1 + [1] x2 + [2] x4 + [1]
          p(ifselsort#) = [4] x2 + [0]                  
                 p(le#) = [4] x1 + [4] x2 + [4]         
                p(min#) = [2] x1 + [0]                  
            p(replace#) = [1] x1 + [1] x3 + [0]         
            p(selsort#) = [4] x1 + [1]                  
                 p(c_1) = [4]                           
                 p(c_2) = [2]                           
                 p(c_3) = [2]                           
                 p(c_4) = [1] x1 + [0]                  
                 p(c_5) = [1] x1 + [1]                  
                 p(c_6) = [1] x1 + [2]                  
                 p(c_7) = [0]                           
                 p(c_8) = [4]                           
                 p(c_9) = [2] x3 + [1]                  
                p(c_10) = [2] x1 + [0]                  
                p(c_11) = [1]                           
                p(c_12) = [0]                           
                p(c_13) = [1] x1 + [1]                  
                p(c_14) = [1] x1 + [0]                  
                p(c_15) = [0]                           
                p(c_16) = [1]                           
                p(c_17) = [1]                           
                p(c_18) = [2]                           
                p(c_19) = [1]                           
                p(c_20) = [0]                           
        
        Following rules are strictly oriented:
        ifmin#(true(),cons(N,cons(M,L))) = [2] L + [8]         
                                         > [2] L + [6]         
                                         = c_6(min#(cons(N,L)))
        
        
        Following rules are (at-least) weakly oriented:
        ifmin#(false(),cons(N,cons(M,L))) =  [2] L + [8]                               
                                          >= [2] L + [5]                               
                                          =  c_5(min#(cons(M,L)))                      
        
            ifselsort#(false(),cons(N,L)) =  [4] L + [8]                               
                                          >= [2] L + [4]                               
                                          =  min#(cons(N,L))                           
        
            ifselsort#(false(),cons(N,L)) =  [4] L + [8]                               
                                          >= [4] L + [1]                               
                                          =  selsort#(replace(min(cons(N,L)),N,L))     
        
             ifselsort#(true(),cons(N,L)) =  [4] L + [8]                               
                                          >= [4] L + [1]                               
                                          =  selsort#(L)                               
        
                  min#(cons(N,cons(M,L))) =  [2] L + [8]                               
                                          >= [2] L + [8]                               
                                          =  c_14(ifmin#(le(N,M),cons(N,cons(M,L))))   
        
                      selsort#(cons(N,L)) =  [4] L + [9]                               
                                          >= [4] L + [8]                               
                                          =  ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        
                      selsort#(cons(N,L)) =  [4] L + [9]                               
                                          >= [2] L + [4]                               
                                          =  min#(cons(N,L))                           
        
            ifrepl(false(),N,M,cons(K,L)) =  [1] L + [2]                               
                                          >= [1] L + [2]                               
                                          =  cons(K,replace(N,M,L))                    
        
             ifrepl(true(),N,M,cons(K,L)) =  [1] L + [2]                               
                                          >= [1] L + [2]                               
                                          =  cons(M,L)                                 
        
                   replace(N,M,cons(K,L)) =  [1] L + [2]                               
                                          >= [1] L + [2]                               
                                          =  ifrepl(eq(N,K),N,M,cons(K,L))             
        
                       replace(N,M,nil()) =  [0]                                       
                                          >= [0]                                       
                                          =  nil()                                     
        
******* Step 1.b:5.b:3.a:3.b:1.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:5.b:3.a:3.b:1.b:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
          
        Consider the set of all dependency pairs
          1: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
          2: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          3: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          4: ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
          5: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
          6: ifselsort#(true(),cons(N,L)) -> selsort#(L)
          7: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
          8: selsort#(cons(N,L)) -> min#(cons(N,L))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******** Step 1.b:5.b:3.a:3.b:1.b:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_14) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [1]                  
                p(cons) = [1] x2 + [4]         
                  p(eq) = [5] x1 + [4]         
               p(false) = [0]                  
               p(ifmin) = [4]                  
              p(ifrepl) = [1] x4 + [4]         
           p(ifselsort) = [1] x1 + [4] x2 + [4]
                  p(le) = [5] x2 + [0]         
                 p(min) = [5]                  
                 p(nil) = [1]                  
             p(replace) = [1] x3 + [4]         
                   p(s) = [0]                  
             p(selsort) = [4] x1 + [1]         
                p(true) = [0]                  
                 p(eq#) = [1]                  
              p(ifmin#) = [1] x2 + [0]         
             p(ifrepl#) = [1] x1 + [2] x2 + [1]
          p(ifselsort#) = [1] x2 + [1]         
                 p(le#) = [4]                  
                p(min#) = [1] x1 + [1]         
            p(replace#) = [2]                  
            p(selsort#) = [1] x1 + [1]         
                 p(c_1) = [0]                  
                 p(c_2) = [0]                  
                 p(c_3) = [1]                  
                 p(c_4) = [0]                  
                 p(c_5) = [1] x1 + [1]         
                 p(c_6) = [1] x1 + [3]         
                 p(c_7) = [1] x1 + [0]         
                 p(c_8) = [1]                  
                 p(c_9) = [1]                  
                p(c_10) = [1]                  
                p(c_11) = [0]                  
                p(c_12) = [0]                  
                p(c_13) = [1] x1 + [1]         
                p(c_14) = [1] x1 + [0]         
                p(c_15) = [2]                  
                p(c_16) = [1]                  
                p(c_17) = [2]                  
                p(c_18) = [4]                  
                p(c_19) = [1]                  
                p(c_20) = [2]                  
        
        Following rules are strictly oriented:
        min#(cons(N,cons(M,L))) = [1] L + [9]                            
                                > [1] L + [8]                            
                                = c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
        
        
        Following rules are (at-least) weakly oriented:
        ifmin#(false(),cons(N,cons(M,L))) =  [1] L + [8]                               
                                          >= [1] L + [6]                               
                                          =  c_5(min#(cons(M,L)))                      
        
         ifmin#(true(),cons(N,cons(M,L))) =  [1] L + [8]                               
                                          >= [1] L + [8]                               
                                          =  c_6(min#(cons(N,L)))                      
        
            ifselsort#(false(),cons(N,L)) =  [1] L + [5]                               
                                          >= [1] L + [5]                               
                                          =  min#(cons(N,L))                           
        
            ifselsort#(false(),cons(N,L)) =  [1] L + [5]                               
                                          >= [1] L + [5]                               
                                          =  selsort#(replace(min(cons(N,L)),N,L))     
        
             ifselsort#(true(),cons(N,L)) =  [1] L + [5]                               
                                          >= [1] L + [1]                               
                                          =  selsort#(L)                               
        
                      selsort#(cons(N,L)) =  [1] L + [5]                               
                                          >= [1] L + [5]                               
                                          =  ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
        
                      selsort#(cons(N,L)) =  [1] L + [5]                               
                                          >= [1] L + [5]                               
                                          =  min#(cons(N,L))                           
        
            ifrepl(false(),N,M,cons(K,L)) =  [1] L + [8]                               
                                          >= [1] L + [8]                               
                                          =  cons(K,replace(N,M,L))                    
        
             ifrepl(true(),N,M,cons(K,L)) =  [1] L + [8]                               
                                          >= [1] L + [4]                               
                                          =  cons(M,L)                                 
        
                   replace(N,M,cons(K,L)) =  [1] L + [8]                               
                                          >= [1] L + [8]                               
                                          =  ifrepl(eq(N,K),N,M,cons(K,L))             
        
                       replace(N,M,nil()) =  [5]                                       
                                          >= [1]                                       
                                          =  nil()                                     
        
******** Step 1.b:5.b:3.a:3.b:1.b:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:5.b:3.a:3.b:1.b:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
            ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> selsort#(L)
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
            selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
            selsort#(cons(N,L)) -> min#(cons(N,L))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L)))):6
          
          2:W:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L)))):6
          
          3:W:ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L)))):6
          
          4:W:ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):8
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):7
          
          5:W:ifselsort#(true(),cons(N,L)) -> selsort#(L)
             -->_1 selsort#(cons(N,L)) -> min#(cons(N,L)):8
             -->_1 selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L)):7
          
          6:W:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):2
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):1
          
          7:W:selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
             -->_1 ifselsort#(true(),cons(N,L)) -> selsort#(L):5
             -->_1 ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L)):4
             -->_1 ifselsort#(false(),cons(N,L)) -> min#(cons(N,L)):3
          
          8:W:selsort#(cons(N,L)) -> min#(cons(N,L))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L)))):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: ifselsort#(false(),cons(N,L)) -> selsort#(replace(min(cons(N,L)),N,L))
          7: selsort#(cons(N,L)) -> ifselsort#(eq(N,min(cons(N,L))),cons(N,L))
          5: ifselsort#(true(),cons(N,L)) -> selsort#(L)
          8: selsort#(cons(N,L)) -> min#(cons(N,L))
          3: ifselsort#(false(),cons(N,L)) -> min#(cons(N,L))
          1: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          6: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))))
          2: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
******** Step 1.b:5.b:3.a:3.b:1.b:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/3,c_10/1,c_11/0,c_12/0,c_13/1,c_14/1,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak DPs:
            ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
            ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
            le#(s(X),s(Y)) -> c_13(le#(X,Y))
            min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          2:S:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_4 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):9
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):9
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):5
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          3:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):5
          
          4:S:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):1
          
          5:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
             -->_2 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):9
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):3
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):2
          
          6:W:ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):9
          
          7:W:ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
             -->_1 min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M)):9
          
          8:W:le#(s(X),s(Y)) -> c_13(le#(X,Y))
             -->_1 le#(s(X),s(Y)) -> c_13(le#(X,Y)):8
          
          9:W:min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
             -->_2 le#(s(X),s(Y)) -> c_13(le#(X,Y)):8
             -->_1 ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L))):7
             -->_1 ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L))):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: min#(cons(N,cons(M,L))) -> c_14(ifmin#(le(N,M),cons(N,cons(M,L))),le#(N,M))
          7: ifmin#(true(),cons(N,cons(M,L))) -> c_6(min#(cons(N,L)))
          6: ifmin#(false(),cons(N,cons(M,L))) -> c_5(min#(cons(M,L)))
          8: le#(s(X),s(Y)) -> c_13(le#(X,Y))
**** Step 1.b:5.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                ,selsort#(replace(min(cons(N,L)),N,L))
                                                ,replace#(min(cons(N,L)),N,L)
                                                ,min#(cons(N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/4,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/2,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          2:S:ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                  ,selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L)
                                                  ,min#(cons(N,L)))
             -->_2 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):5
             -->_3 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          3:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L))):5
          
          4:S:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):1
          
          5:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)),min#(cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):3
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(min#(cons(N,L))
                                                       ,selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)
                                                       ,min#(cons(N,L))):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
          selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
**** Step 1.b:5.b:3.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          - Weak DPs:
              ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
        
        Problem (S)
          - Strict DPs:
              ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
              ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
              selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          - Weak DPs:
              ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
              replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          - Weak TRS:
              eq(0(),0()) -> true()
              eq(0(),s(Y)) -> false()
              eq(s(X),0()) -> false()
              eq(s(X),s(Y)) -> eq(X,Y)
              ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
              ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
              ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
              ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
              le(0(),Y) -> true()
              le(s(X),0()) -> false()
              le(s(X),s(Y)) -> le(X,Y)
              min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
              min(cons(0(),nil())) -> 0()
              min(cons(s(N),nil())) -> s(N)
              replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
              replace(N,M,nil()) -> nil()
          - Signature:
              {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
              ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
              ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
              ,selsort#} and constructors {0,cons,false,nil,s,true}
***** Step 1.b:5.b:3.b:3.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:5.b:3.b:3.a:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_7) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_17) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                      
                          [0]                      
                p(cons) = [1 0] x1 + [1 2] x2 + [1]
                          [0 0]      [0 1]      [1]
                  p(eq) = [0 1] x2 + [0]           
                          [1 0]      [0]           
               p(false) = [0]                      
                          [0]                      
               p(ifmin) = [0 1] x1 + [0 2] x2 + [0]
                          [1 0]      [0 1]      [1]
              p(ifrepl) = [1 0] x3 + [1 0] x4 + [3]
                          [0 0]      [0 1]      [0]
           p(ifselsort) = [0 0] x2 + [0]           
                          [2 1]      [0]           
                  p(le) = [1 1] x1 + [0]           
                          [2 2]      [1]           
                 p(min) = [1 0] x1 + [3]           
                          [0 1]      [3]           
                 p(nil) = [3]                      
                          [0]                      
             p(replace) = [1 0] x2 + [1 0] x3 + [3]
                          [0 0]      [0 1]      [0]
                   p(s) = [0]                      
                          [0]                      
             p(selsort) = [0]                      
                          [0]                      
                p(true) = [0]                      
                          [0]                      
                 p(eq#) = [0 2] x1 + [0 0] x2 + [2]
                          [0 2]      [2 2]      [0]
              p(ifmin#) = [0]                      
                          [1]                      
             p(ifrepl#) = [0 0] x2 + [0 1] x4 + [0]
                          [3 1]      [2 0]      [3]
          p(ifselsort#) = [1 1] x2 + [3]           
                          [3 1]      [2]           
                 p(le#) = [0 0] x2 + [0]           
                          [0 1]      [2]           
                p(min#) = [0 0] x1 + [0]           
                          [0 1]      [0]           
            p(replace#) = [0 1] x3 + [0]           
                          [1 0]      [0]           
            p(selsort#) = [1 2] x1 + [2]           
                          [0 0]      [2]           
                 p(c_1) = [2]                      
                          [0]                      
                 p(c_2) = [0]                      
                          [2]                      
                 p(c_3) = [0]                      
                          [0]                      
                 p(c_4) = [0 1] x1 + [2]           
                          [1 0]      [0]           
                 p(c_5) = [0]                      
                          [2]                      
                 p(c_6) = [0]                      
                          [0]                      
                 p(c_7) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_8) = [1]                      
                          [1]                      
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]
                          [1 0]      [2 2]      [0]
                p(c_10) = [1 1] x1 + [0]           
                          [0 0]      [2]           
                p(c_11) = [0]                      
                          [0]                      
                p(c_12) = [0]                      
                          [0]                      
                p(c_13) = [0 2] x1 + [1]           
                          [0 0]      [0]           
                p(c_14) = [2 1] x1 + [0]           
                          [0 0]      [0]           
                p(c_15) = [0]                      
                          [0]                      
                p(c_16) = [0]                      
                          [0]                      
                p(c_17) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                p(c_18) = [2]                      
                          [0]                      
                p(c_19) = [1 0] x1 + [0]           
                          [0 0]      [2]           
                p(c_20) = [0]                      
                          [0]                      
        
        Following rules are strictly oriented:
        ifrepl#(false(),N,M,cons(K,L)) = [0 0] K + [0 1] L + [0 0] N + [1]
                                         [2 0]     [2 4]     [3 1]     [5]
                                       > [0 1] L + [0]                    
                                         [0 0]     [0]                    
                                       = c_7(replace#(N,M,L))             
        
        
        Following rules are (at-least) weakly oriented:
        ifselsort#(false(),cons(N,L)) =  [1 3] L + [1 0] N + [5]                                                
                                         [3 7]     [3 0]     [6]                                                
                                      >= [1 3] L + [1 0] N + [5]                                                
                                         [3 4]     [1 0]     [5]                                                
                                      =  c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
        
         ifselsort#(true(),cons(N,L)) =  [1 3] L + [1 0] N + [5]                                                
                                         [3 7]     [3 0]     [6]                                                
                                      >= [1 2] L + [4]                                                          
                                         [0 0]     [2]                                                          
                                      =  c_10(selsort#(L))                                                      
        
              replace#(N,M,cons(K,L)) =  [0 0] K + [0 1] L + [1]                                                
                                         [1 0]     [1 2]     [1]                                                
                                      >= [0 1] L + [1]                                                          
                                         [0 0]     [1]                                                          
                                      =  c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))                                   
        
                  selsort#(cons(N,L)) =  [1 4] L + [1 0] N + [5]                                                
                                         [0 0]     [0 0]     [2]                                                
                                      >= [1 3] L + [1 0] N + [5]                                                
                                         [0 0]     [0 0]     [2]                                                
                                      =  c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))                       
        
        ifrepl(false(),N,M,cons(K,L)) =  [1 0] K + [1 2] L + [1 0] M + [4]                                      
                                         [0 0]     [0 1]     [0 0]     [1]                                      
                                      >= [1 0] K + [1 2] L + [1 0] M + [4]                                      
                                         [0 0]     [0 1]     [0 0]     [1]                                      
                                      =  cons(K,replace(N,M,L))                                                 
        
         ifrepl(true(),N,M,cons(K,L)) =  [1 0] K + [1 2] L + [1 0] M + [4]                                      
                                         [0 0]     [0 1]     [0 0]     [1]                                      
                                      >= [1 2] L + [1 0] M + [1]                                                
                                         [0 1]     [0 0]     [1]                                                
                                      =  cons(M,L)                                                              
        
               replace(N,M,cons(K,L)) =  [1 0] K + [1 2] L + [1 0] M + [4]                                      
                                         [0 0]     [0 1]     [0 0]     [1]                                      
                                      >= [1 0] K + [1 2] L + [1 0] M + [4]                                      
                                         [0 0]     [0 1]     [0 0]     [1]                                      
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))                                          
        
                   replace(N,M,nil()) =  [1 0] M + [6]                                                          
                                         [0 0]     [0]                                                          
                                      >= [3]                                                                    
                                         [0]                                                                    
                                      =  nil()                                                                  
        
****** Step 1.b:5.b:3.b:3.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:5.b:3.b:3.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          
        Consider the set of all dependency pairs
          1: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          2: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          3: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
          4: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          5: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        Processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:5.b:3.b:3.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_7) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_17) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                      
                          [0]                      
                p(cons) = [0 2] x1 + [1 2] x2 + [0]
                          [0 0]      [0 1]      [2]
                  p(eq) = [0 0] x1 + [0]           
                          [3 0]      [0]           
               p(false) = [0]                      
                          [0]                      
               p(ifmin) = [0 0] x1 + [1 0] x2 + [0]
                          [0 1]      [0 0]      [0]
              p(ifrepl) = [0 2] x3 + [1 1] x4 + [0]
                          [0 0]      [0 1]      [0]
           p(ifselsort) = [0]                      
                          [1]                      
                  p(le) = [0 0] x1 + [0]           
                          [2 2]      [0]           
                 p(min) = [0]                      
                          [0]                      
                 p(nil) = [2]                      
                          [2]                      
             p(replace) = [0 2] x2 + [1 1] x3 + [0]
                          [0 0]      [0 1]      [0]
                   p(s) = [0 2] x1 + [0]           
                          [0 0]      [0]           
             p(selsort) = [0]                      
                          [0]                      
                p(true) = [0]                      
                          [0]                      
                 p(eq#) = [2 0] x2 + [0]           
                          [1 0]      [0]           
              p(ifmin#) = [0]                      
                          [0]                      
             p(ifrepl#) = [0 1] x4 + [0]           
                          [0 0]      [1]           
          p(ifselsort#) = [2 2] x2 + [0]           
                          [2 2]      [3]           
                 p(le#) = [0 2] x1 + [0 1] x2 + [0]
                          [0 1]      [2 2]      [1]
                p(min#) = [0]                      
                          [2]                      
            p(replace#) = [0 1] x3 + [2]           
                          [0 1]      [0]           
            p(selsort#) = [2 2] x1 + [0]           
                          [0 0]      [1]           
                 p(c_1) = [1]                      
                          [2]                      
                 p(c_2) = [0]                      
                          [0]                      
                 p(c_3) = [2]                      
                          [2]                      
                 p(c_4) = [1 2] x1 + [0]           
                          [1 0]      [2]           
                 p(c_5) = [0]                      
                          [0]                      
                 p(c_6) = [1]                      
                          [1]                      
                 p(c_7) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_8) = [2]                      
                          [0]                      
                 p(c_9) = [1 2] x1 + [1 1] x2 + [0]
                          [1 0]      [0 0]      [0]
                p(c_10) = [1 2] x1 + [0]           
                          [0 1]      [1]           
                p(c_11) = [2]                      
                          [2]                      
                p(c_12) = [0]                      
                          [0]                      
                p(c_13) = [1]                      
                          [0]                      
                p(c_14) = [0]                      
                          [2]                      
                p(c_15) = [2]                      
                          [0]                      
                p(c_16) = [2]                      
                          [1]                      
                p(c_17) = [1 1] x1 + [0]           
                          [0 2]      [0]           
                p(c_18) = [1]                      
                          [0]                      
                p(c_19) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                p(c_20) = [1]                      
                          [1]                      
        
        Following rules are strictly oriented:
        replace#(N,M,cons(K,L)) = [0 1] L + [4]                       
                                  [0 1]     [2]                       
                                > [0 1] L + [3]                       
                                  [0 0]     [2]                       
                                = c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        
        
        Following rules are (at-least) weakly oriented:
        ifrepl#(false(),N,M,cons(K,L)) =  [0 1] L + [2]                                                          
                                          [0 0]     [1]                                                          
                                       >= [0 1] L + [2]                                                          
                                          [0 0]     [0]                                                          
                                       =  c_7(replace#(N,M,L))                                                   
        
         ifselsort#(false(),cons(N,L)) =  [2 6] L + [0 4] N + [4]                                                
                                          [2 6]     [0 4]     [7]                                                
                                       >= [2 6] L + [0 4] N + [4]                                                
                                          [2 4]     [0 4]     [0]                                                
                                       =  c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
        
          ifselsort#(true(),cons(N,L)) =  [2 6] L + [0 4] N + [4]                                                
                                          [2 6]     [0 4]     [7]                                                
                                       >= [2 2] L + [2]                                                          
                                          [0 0]     [2]                                                          
                                       =  c_10(selsort#(L))                                                      
        
                   selsort#(cons(N,L)) =  [2 6] L + [0 4] N + [4]                                                
                                          [0 0]     [0 0]     [1]                                                
                                       >= [2 6] L + [0 4] N + [4]                                                
                                          [0 0]     [0 0]     [1]                                                
                                       =  c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))                       
        
         ifrepl(false(),N,M,cons(K,L)) =  [0 2] K + [1 3] L + [0 2] M + [2]                                      
                                          [0 0]     [0 1]     [0 0]     [2]                                      
                                       >= [0 2] K + [1 3] L + [0 2] M + [0]                                      
                                          [0 0]     [0 1]     [0 0]     [2]                                      
                                       =  cons(K,replace(N,M,L))                                                 
        
          ifrepl(true(),N,M,cons(K,L)) =  [0 2] K + [1 3] L + [0 2] M + [2]                                      
                                          [0 0]     [0 1]     [0 0]     [2]                                      
                                       >= [1 2] L + [0 2] M + [0]                                                
                                          [0 1]     [0 0]     [2]                                                
                                       =  cons(M,L)                                                              
        
                replace(N,M,cons(K,L)) =  [0 2] K + [1 3] L + [0 2] M + [2]                                      
                                          [0 0]     [0 1]     [0 0]     [2]                                      
                                       >= [0 2] K + [1 3] L + [0 2] M + [2]                                      
                                          [0 0]     [0 1]     [0 0]     [2]                                      
                                       =  ifrepl(eq(N,K),N,M,cons(K,L))                                          
        
                    replace(N,M,nil()) =  [0 2] M + [4]                                                          
                                          [0 0]     [2]                                                          
                                       >= [2]                                                                    
                                          [2]                                                                    
                                       =  nil()                                                                  
        
******* Step 1.b:5.b:3.b:3.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:5.b:3.b:3.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          2:W:ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):5
             -->_2 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):4
          
          3:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):5
          
          4:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):1
          
          5:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):3
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                 ,replace#(min(cons(N,L)),N,L))
          5: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          3: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          1: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
          4: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
******* Step 1.b:5.b:3.b:3.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

***** Step 1.b:5.b:3.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak DPs:
            ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
            replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L))
             -->_2 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):5
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          2:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          3:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):2
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)):1
          
          4:W:ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
             -->_1 replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L))):5
          
          5:W:replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
             -->_1 ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: replace#(N,M,cons(K,L)) -> c_17(ifrepl#(eq(N,K),N,M,cons(K,L)))
          4: ifrepl#(false(),N,M,cons(K,L)) -> c_7(replace#(N,M,L))
***** Step 1.b:5.b:3.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)),replace#(min(cons(N,L)),N,L))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/2,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                  ,replace#(min(cons(N,L)),N,L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          2:S:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          3:S:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):2
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))
                                                       ,replace#(min(cons(N,L)),N,L)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
***** Step 1.b:5.b:3.b:3.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
          
        The strictly oriented rules are moved into the weak component.
****** Step 1.b:5.b:3.b:3.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                p(cons) = [1] x2 + [4]                  
                  p(eq) = [7] x1 + [0]                  
               p(false) = [0]                           
               p(ifmin) = [4] x1 + [2]                  
              p(ifrepl) = [1] x4 + [0]                  
           p(ifselsort) = [4] x1 + [0]                  
                  p(le) = [2] x1 + [1] x2 + [1]         
                 p(min) = [1]                           
                 p(nil) = [4]                           
             p(replace) = [1] x3 + [0]                  
                   p(s) = [0]                           
             p(selsort) = [1]                           
                p(true) = [0]                           
                 p(eq#) = [1] x1 + [2] x2 + [2]         
              p(ifmin#) = [2] x1 + [2]                  
             p(ifrepl#) = [1] x1 + [2] x3 + [1] x4 + [0]
          p(ifselsort#) = [1] x2 + [2]                  
                 p(le#) = [1] x2 + [0]                  
                p(min#) = [1] x1 + [1]                  
            p(replace#) = [1] x1 + [2] x2 + [1] x3 + [0]
            p(selsort#) = [1] x1 + [2]                  
                 p(c_1) = [4]                           
                 p(c_2) = [1]                           
                 p(c_3) = [0]                           
                 p(c_4) = [1] x1 + [1]                  
                 p(c_5) = [1]                           
                 p(c_6) = [1]                           
                 p(c_7) = [2] x1 + [0]                  
                 p(c_8) = [1]                           
                 p(c_9) = [1] x1 + [3]                  
                p(c_10) = [1] x1 + [4]                  
                p(c_11) = [0]                           
                p(c_12) = [0]                           
                p(c_13) = [4] x1 + [1]                  
                p(c_14) = [4] x2 + [4]                  
                p(c_15) = [1]                           
                p(c_16) = [1]                           
                p(c_17) = [1]                           
                p(c_18) = [4]                           
                p(c_19) = [1] x1 + [0]                  
                p(c_20) = [1]                           
        
        Following rules are strictly oriented:
        ifselsort#(false(),cons(N,L)) = [1] L + [6]                               
                                      > [1] L + [5]                               
                                      = c_9(selsort#(replace(min(cons(N,L)),N,L)))
        
        
        Following rules are (at-least) weakly oriented:
         ifselsort#(true(),cons(N,L)) =  [1] L + [6]                                     
                                      >= [1] L + [6]                                     
                                      =  c_10(selsort#(L))                               
        
                  selsort#(cons(N,L)) =  [1] L + [6]                                     
                                      >= [1] L + [6]                                     
                                      =  c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        
        ifrepl(false(),N,M,cons(K,L)) =  [1] L + [4]                                     
                                      >= [1] L + [4]                                     
                                      =  cons(K,replace(N,M,L))                          
        
         ifrepl(true(),N,M,cons(K,L)) =  [1] L + [4]                                     
                                      >= [1] L + [4]                                     
                                      =  cons(M,L)                                       
        
               replace(N,M,cons(K,L)) =  [1] L + [4]                                     
                                      >= [1] L + [4]                                     
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))                   
        
                   replace(N,M,nil()) =  [4]                                             
                                      >= [4]                                             
                                      =  nil()                                           
        
****** Step 1.b:5.b:3.b:3.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:5.b:3.b:3.b:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          2: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          
        Consider the set of all dependency pairs
          1: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
          2: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          3: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1,2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:5.b:3.b:3.b:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_19) = {1}
        
        Following symbols are considered usable:
          {ifrepl,replace,eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#,selsort#}
        TcT has computed the following interpretation:
                   p(0) = [2]                  
                p(cons) = [1] x1 + [1] x2 + [1]
                  p(eq) = [5] x1 + [4]         
               p(false) = [0]                  
               p(ifmin) = [2] x1 + [0]         
              p(ifrepl) = [1] x3 + [1] x4 + [0]
           p(ifselsort) = [0]                  
                  p(le) = [2] x1 + [4] x2 + [0]
                 p(min) = [4]                  
                 p(nil) = [3]                  
             p(replace) = [1] x2 + [1] x3 + [0]
                   p(s) = [1]                  
             p(selsort) = [1]                  
                p(true) = [0]                  
                 p(eq#) = [2] x1 + [4]         
              p(ifmin#) = [4] x2 + [0]         
             p(ifrepl#) = [2] x4 + [1]         
          p(ifselsort#) = [4] x2 + [0]         
                 p(le#) = [4] x1 + [0]         
                p(min#) = [1] x1 + [2]         
            p(replace#) = [1]                  
            p(selsort#) = [4] x1 + [3]         
                 p(c_1) = [0]                  
                 p(c_2) = [1]                  
                 p(c_3) = [1]                  
                 p(c_4) = [2] x1 + [0]         
                 p(c_5) = [1] x1 + [2]         
                 p(c_6) = [0]                  
                 p(c_7) = [0]                  
                 p(c_8) = [1]                  
                 p(c_9) = [1] x1 + [0]         
                p(c_10) = [1] x1 + [0]         
                p(c_11) = [0]                  
                p(c_12) = [1]                  
                p(c_13) = [0]                  
                p(c_14) = [0]                  
                p(c_15) = [4]                  
                p(c_16) = [0]                  
                p(c_17) = [1]                  
                p(c_18) = [0]                  
                p(c_19) = [1] x1 + [2]         
                p(c_20) = [1]                  
        
        Following rules are strictly oriented:
        ifselsort#(true(),cons(N,L)) = [4] L + [4] N + [4]                             
                                     > [4] L + [3]                                     
                                     = c_10(selsort#(L))                               
        
                 selsort#(cons(N,L)) = [4] L + [4] N + [7]                             
                                     > [4] L + [4] N + [6]                             
                                     = c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        
        
        Following rules are (at-least) weakly oriented:
        ifselsort#(false(),cons(N,L)) =  [4] L + [4] N + [4]                       
                                      >= [4] L + [4] N + [3]                       
                                      =  c_9(selsort#(replace(min(cons(N,L)),N,L)))
        
        ifrepl(false(),N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]               
                                      >= [1] K + [1] L + [1] M + [1]               
                                      =  cons(K,replace(N,M,L))                    
        
         ifrepl(true(),N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]               
                                      >= [1] L + [1] M + [1]                       
                                      =  cons(M,L)                                 
        
               replace(N,M,cons(K,L)) =  [1] K + [1] L + [1] M + [1]               
                                      >= [1] K + [1] L + [1] M + [1]               
                                      =  ifrepl(eq(N,K),N,M,cons(K,L))             
        
                   replace(N,M,nil()) =  [1] M + [3]                               
                                      >= [3]                                       
                                      =  nil()                                     
        
******* Step 1.b:5.b:3.b:3.b:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:5.b:3.b:3.b:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
            ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
            selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          2:W:ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
             -->_1 selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L))):3
          
          3:W:selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
             -->_1 ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L)):2
             -->_1 ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: ifselsort#(false(),cons(N,L)) -> c_9(selsort#(replace(min(cons(N,L)),N,L)))
          3: selsort#(cons(N,L)) -> c_19(ifselsort#(eq(N,min(cons(N,L))),cons(N,L)))
          2: ifselsort#(true(),cons(N,L)) -> c_10(selsort#(L))
******* Step 1.b:5.b:3.b:3.b:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            eq(0(),0()) -> true()
            eq(0(),s(Y)) -> false()
            eq(s(X),0()) -> false()
            eq(s(X),s(Y)) -> eq(X,Y)
            ifmin(false(),cons(N,cons(M,L))) -> min(cons(M,L))
            ifmin(true(),cons(N,cons(M,L))) -> min(cons(N,L))
            ifrepl(false(),N,M,cons(K,L)) -> cons(K,replace(N,M,L))
            ifrepl(true(),N,M,cons(K,L)) -> cons(M,L)
            le(0(),Y) -> true()
            le(s(X),0()) -> false()
            le(s(X),s(Y)) -> le(X,Y)
            min(cons(N,cons(M,L))) -> ifmin(le(N,M),cons(N,cons(M,L)))
            min(cons(0(),nil())) -> 0()
            min(cons(s(N),nil())) -> s(N)
            replace(N,M,cons(K,L)) -> ifrepl(eq(N,K),N,M,cons(K,L))
            replace(N,M,nil()) -> nil()
        - Signature:
            {eq/2,ifmin/2,ifrepl/4,ifselsort/2,le/2,min/1,replace/3,selsort/1,eq#/2,ifmin#/2,ifrepl#/4,ifselsort#/2
            ,le#/2,min#/1,replace#/3,selsort#/1} / {0/0,cons/2,false/0,nil/0,s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/0,c_13/1,c_14/2,c_15/0,c_16/0,c_17/1,c_18/0,c_19/1,c_20/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {eq#,ifmin#,ifrepl#,ifselsort#,le#,min#,replace#
            ,selsort#} and constructors {0,cons,false,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))