* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L))
            rev(nil()) -> nil()
            rev1(X,cons(Y,L)) -> rev1(Y,L)
            rev1(0(),nil()) -> 0()
            rev1(s(X),nil()) -> s(X)
            rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L))))
            rev2(X,nil()) -> nil()
        - Signature:
            {rev/1,rev1/2,rev2/2} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {0,cons,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            rev(cons(X,L)) -> cons(rev1(X,L),rev2(X,L))
            rev(nil()) -> nil()
            rev1(X,cons(Y,L)) -> rev1(Y,L)
            rev1(0(),nil()) -> 0()
            rev1(s(X),nil()) -> s(X)
            rev2(X,cons(Y,L)) -> rev(cons(X,rev(rev2(Y,L))))
            rev2(X,nil()) -> nil()
        - Signature:
            {rev/1,rev1/2,rev2/2} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {rev,rev1,rev2} and constructors {0,cons,nil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          rev1(x,z){z -> cons(y,z)} =
            rev1(x,cons(y,z)) ->^+ rev1(y,z)
              = C[rev1(y,z) = rev1(x,z){x -> y}]

WORST_CASE(Omega(n^1),?)