* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: and(false(),false()) -> false() and(false(),true()) -> false() and(true(),false()) -> false() and(true(),true()) -> true() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(apply(T,S),var(L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(cons(T,L),nil()) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) eq(lambda(X,T),var(L)) -> false() eq(nil(),cons(T,L)) -> false() eq(nil(),nil()) -> true() eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(var(L),var(Lp)) -> eq(L,Lp) if(false(),var(K),var(L)) -> var(L) if(true(),var(K),var(L)) -> var(K) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))) ,ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) - Signature: {and/2,eq/2,if/3,ren/3} / {apply/2,cons/2,false/0,lambda/2,nil/0,true/0,var/1} - Obligation: innermost runtime complexity wrt. defined symbols {and,eq,if,ren} and constructors {apply,cons,false,lambda ,nil,true,var} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: and(false(),false()) -> false() and(false(),true()) -> false() and(true(),false()) -> false() and(true(),true()) -> true() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(apply(T,S),var(L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(cons(T,L),nil()) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) eq(lambda(X,T),var(L)) -> false() eq(nil(),cons(T,L)) -> false() eq(nil(),nil()) -> true() eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(var(L),var(Lp)) -> eq(L,Lp) if(false(),var(K),var(L)) -> var(L) if(true(),var(K),var(L)) -> var(K) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))) ,ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) - Signature: {and/2,eq/2,if/3,ren/3} / {apply/2,cons/2,false/0,lambda/2,nil/0,true/0,var/1} - Obligation: innermost runtime complexity wrt. defined symbols {and,eq,if,ren} and constructors {apply,cons,false,lambda ,nil,true,var} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: eq(x,z){x -> apply(x,y),z -> apply(z,u)} = eq(apply(x,y),apply(z,u)) ->^+ and(eq(x,z),eq(y,u)) = C[eq(x,z) = eq(x,z){}] WORST_CASE(Omega(n^1),?)