* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            e(g(X)) -> e(X)
            f(a()) -> f(c(a()))
            f(a()) -> f(d(a()))
            f(c(X)) -> X
            f(c(a())) -> f(d(b()))
            f(c(b())) -> f(d(a()))
            f(d(X)) -> X
        - Signature:
            {e/1,f/1} / {a/0,b/0,c/1,d/1,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {e,f} and constructors {a,b,c,d,g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            e(g(X)) -> e(X)
            f(a()) -> f(c(a()))
            f(a()) -> f(d(a()))
            f(c(X)) -> X
            f(c(a())) -> f(d(b()))
            f(c(b())) -> f(d(a()))
            f(d(X)) -> X
        - Signature:
            {e/1,f/1} / {a/0,b/0,c/1,d/1,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {e,f} and constructors {a,b,c,d,g}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          e(x){x -> g(x)} =
            e(g(x)) ->^+ e(x)
              = C[e(x) = e(x){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            e(g(X)) -> e(X)
            f(a()) -> f(c(a()))
            f(a()) -> f(d(a()))
            f(c(X)) -> X
            f(c(a())) -> f(d(b()))
            f(c(b())) -> f(d(a()))
            f(d(X)) -> X
        - Signature:
            {e/1,f/1} / {a/0,b/0,c/1,d/1,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {e,f} and constructors {a,b,c,d,g}
    + Applied Processor:
        Bounds {initialAutomaton = perSymbol, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          a_0() -> 1
          a_0() -> 6
          a_1() -> 6
          a_1() -> 9
          a_2() -> 6
          a_2() -> 11
          b_0() -> 2
          b_0() -> 6
          b_1() -> 6
          b_1() -> 9
          b_2() -> 6
          b_2() -> 11
          c_0(1) -> 3
          c_0(1) -> 6
          c_0(2) -> 3
          c_0(2) -> 6
          c_0(3) -> 3
          c_0(3) -> 6
          c_0(4) -> 3
          c_0(4) -> 6
          c_0(7) -> 3
          c_0(7) -> 6
          c_1(9) -> 8
          d_0(1) -> 4
          d_0(1) -> 6
          d_0(2) -> 4
          d_0(2) -> 6
          d_0(3) -> 4
          d_0(3) -> 6
          d_0(4) -> 4
          d_0(4) -> 6
          d_0(7) -> 4
          d_0(7) -> 6
          d_1(9) -> 8
          d_2(11) -> 10
          e_0(1) -> 5
          e_0(2) -> 5
          e_0(3) -> 5
          e_0(4) -> 5
          e_0(7) -> 5
          e_1(1) -> 5
          e_1(2) -> 5
          e_1(3) -> 5
          e_1(4) -> 5
          e_1(7) -> 5
          f_0(1) -> 6
          f_0(2) -> 6
          f_0(3) -> 6
          f_0(4) -> 6
          f_0(7) -> 6
          f_1(8) -> 6
          f_2(10) -> 6
          g_0(1) -> 6
          g_0(1) -> 7
          g_0(2) -> 6
          g_0(2) -> 7
          g_0(3) -> 6
          g_0(3) -> 7
          g_0(4) -> 6
          g_0(4) -> 7
          g_0(7) -> 6
          g_0(7) -> 7
          1 -> 6
          2 -> 6
          3 -> 6
          4 -> 6
          7 -> 6
          9 -> 6
          11 -> 6
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            e(g(X)) -> e(X)
            f(a()) -> f(c(a()))
            f(a()) -> f(d(a()))
            f(c(X)) -> X
            f(c(a())) -> f(d(b()))
            f(c(b())) -> f(d(a()))
            f(d(X)) -> X
        - Signature:
            {e/1,f/1} / {a/0,b/0,c/1,d/1,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {e,f} and constructors {a,b,c,d,g}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))