* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),Y) -> 0() gcd(s(X),0()) -> s(X) gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if,le,minus,pred} and constructors {0,false,s,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: gcd(0(),Y) -> 0() gcd(s(X),0()) -> s(X) gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if,le,minus,pred} and constructors {0,false,s,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: le(x,y){x -> s(x),y -> s(y)} = le(s(x),s(y)) ->^+ le(x,y) = C[le(x,y) = le(x,y){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: gcd(0(),Y) -> 0() gcd(s(X),0()) -> s(X) gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd,if,le,minus,pred} and constructors {0,false,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs gcd#(0(),Y) -> c_1() gcd#(s(X),0()) -> c_2() gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(0(),Y) -> c_6() le#(s(X),0()) -> c_7() le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,0()) -> c_9() minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) pred#(s(X)) -> c_11() Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(0(),Y) -> c_1() gcd#(s(X),0()) -> c_2() gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(0(),Y) -> c_6() le#(s(X),0()) -> c_7() le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,0()) -> c_9() minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) pred#(s(X)) -> c_11() - Weak TRS: gcd(0(),Y) -> 0() gcd(s(X),0()) -> s(X) gcd(s(X),s(Y)) -> if(le(Y,X),s(X),s(Y)) if(false(),s(X),s(Y)) -> gcd(minus(Y,X),s(X)) if(true(),s(X),s(Y)) -> gcd(minus(X,Y),s(Y)) le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X gcd#(0(),Y) -> c_1() gcd#(s(X),0()) -> c_2() gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(0(),Y) -> c_6() le#(s(X),0()) -> c_7() le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,0()) -> c_9() minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) pred#(s(X)) -> c_11() ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(0(),Y) -> c_1() gcd#(s(X),0()) -> c_2() gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(0(),Y) -> c_6() le#(s(X),0()) -> c_7() le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,0()) -> c_9() minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) pred#(s(X)) -> c_11() - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,6,7,9,11} by application of Pre({1,2,6,7,9,11}) = {3,4,5,8,10}. Here rules are labelled as follows: 1: gcd#(0(),Y) -> c_1() 2: gcd#(s(X),0()) -> c_2() 3: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) 4: if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) 5: if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) 6: le#(0(),Y) -> c_6() 7: le#(s(X),0()) -> c_7() 8: le#(s(X),s(Y)) -> c_8(le#(X,Y)) 9: minus#(X,0()) -> c_9() 10: minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) 11: pred#(s(X)) -> c_11() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) - Weak DPs: gcd#(0(),Y) -> c_1() gcd#(s(X),0()) -> c_2() le#(0(),Y) -> c_6() le#(s(X),0()) -> c_7() minus#(X,0()) -> c_9() pred#(s(X)) -> c_11() - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4 -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3 -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2 -->_2 le#(s(X),0()) -> c_7():9 -->_2 le#(0(),Y) -> c_6():8 2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 -->_2 minus#(X,0()) -> c_9():10 -->_1 gcd#(0(),Y) -> c_1():6 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 -->_2 minus#(X,0()) -> c_9():10 -->_1 gcd#(0(),Y) -> c_1():6 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y)) -->_1 le#(s(X),0()) -> c_7():9 -->_1 le#(0(),Y) -> c_6():8 -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4 5:S:minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) -->_1 pred#(s(X)) -> c_11():11 -->_2 minus#(X,0()) -> c_9():10 -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 6:W:gcd#(0(),Y) -> c_1() 7:W:gcd#(s(X),0()) -> c_2() 8:W:le#(0(),Y) -> c_6() 9:W:le#(s(X),0()) -> c_7() 10:W:minus#(X,0()) -> c_9() 11:W:pred#(s(X)) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: gcd#(s(X),0()) -> c_2() 6: gcd#(0(),Y) -> c_1() 10: minus#(X,0()) -> c_9() 11: pred#(s(X)) -> c_11() 8: le#(0(),Y) -> c_6() 9: le#(s(X),0()) -> c_7() ** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/2,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4 -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3 -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2 2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 4:S:le#(s(X),s(Y)) -> c_8(le#(X,Y)) -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):4 5:S:minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(pred#(minus(X,Y)),minus#(X,Y)):5 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: minus#(X,s(Y)) -> c_10(minus#(X,Y)) ** Step 1.b:6: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 4: le#(s(X),s(Y)) -> c_8(le#(X,Y)) The strictly oriented rules are moved into the weak component. *** Step 1.b:6.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) le#(s(X),s(Y)) -> c_8(le#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1,2}, uargs(c_4) = {1,2}, uargs(c_5) = {1,2}, uargs(c_8) = {1}, uargs(c_10) = {1} Following symbols are considered usable: {minus,pred,gcd#,if#,le#,minus#,pred#} TcT has computed the following interpretation: p(0) = 0 p(false) = 0 p(gcd) = 2 p(if) = 2 + x1*x2 + 2*x1*x3 + 2*x1^2 + x2^2 + x3 p(le) = 0 p(minus) = x1 p(pred) = x1 p(s) = 1 + x1 p(true) = 0 p(gcd#) = x1 + x1^2 + x2^2 p(if#) = 1 + x2^2 + x3^2 p(le#) = x2 p(minus#) = 2 p(pred#) = x1^2 p(c_1) = 0 p(c_2) = 0 p(c_3) = x1 + x2 p(c_4) = x1 + x2 p(c_5) = x1 + x2 p(c_6) = 0 p(c_7) = 1 p(c_8) = x1 p(c_9) = 0 p(c_10) = x1 p(c_11) = 1 Following rules are strictly oriented: le#(s(X),s(Y)) = 1 + Y > Y = c_8(le#(X,Y)) Following rules are (at-least) weakly oriented: gcd#(s(X),s(Y)) = 3 + 3*X + X^2 + 2*Y + Y^2 >= 3 + 3*X + X^2 + 2*Y + Y^2 = c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) = 3 + 2*X + X^2 + 2*Y + Y^2 >= 3 + 2*X + X^2 + Y + Y^2 = c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) = 3 + 2*X + X^2 + 2*Y + Y^2 >= 3 + X + X^2 + 2*Y + Y^2 = c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) = 2 >= 2 = c_10(minus#(X,Y)) minus(X,0()) = X >= X = X minus(X,s(Y)) = X >= X = pred(minus(X,Y)) pred(s(X)) = 1 + X >= X = X *** Step 1.b:6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak DPs: le#(s(X),s(Y)) -> c_8(le#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak DPs: le#(s(X),s(Y)) -> c_8(le#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) -->_2 le#(s(X),s(Y)) -> c_8(le#(X,Y)):5 -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3 -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2 2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 4:S:minus#(X,s(Y)) -> c_10(minus#(X,Y)) -->_1 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 5:W:le#(s(X),s(Y)) -> c_8(le#(X,Y)) -->_1 le#(s(X),s(Y)) -> c_8(le#(X,Y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: le#(s(X),s(Y)) -> c_8(le#(X,Y)) *** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/2,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)) -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3 -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2 2:S:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 3:S:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y)),le#(Y,X)):1 4:S:minus#(X,s(Y)) -> c_10(minus#(X,Y)) -->_1 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) *** Step 1.b:6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 2: if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) 3: if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) 4: minus#(X,s(Y)) -> c_10(minus#(X,Y)) Consider the set of all dependency pairs 1: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) 2: if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) 3: if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) 4: minus#(X,s(Y)) -> c_10(minus#(X,Y)) Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2)) SPACE(?,?)on application of the dependency pairs {2,3,4} These cover all (indirect) predecessors of dependency pairs {1,2,3,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 1.b:6.b:3.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1,2}, uargs(c_5) = {1,2}, uargs(c_10) = {1} Following symbols are considered usable: {minus,pred,gcd#,if#,le#,minus#,pred#} TcT has computed the following interpretation: p(0) = 1 p(false) = 0 p(gcd) = 0 p(if) = 1 + 2*x1 + 2*x1*x2 + 2*x3 p(le) = 0 p(minus) = x1 p(pred) = x1 p(s) = 1 + x1 p(true) = 0 p(gcd#) = 3 + x1 + 2*x1*x2 + x2 p(if#) = 3 + x2 + 2*x2*x3 + x3 p(le#) = x1 p(minus#) = 1 + 2*x2 p(pred#) = x1^2 p(c_1) = 0 p(c_2) = 1 p(c_3) = x1 p(c_4) = 1 + x1 + x2 p(c_5) = 1 + x1 + x2 p(c_6) = 1 p(c_7) = 1 p(c_8) = 0 p(c_9) = 0 p(c_10) = 1 + x1 p(c_11) = 0 Following rules are strictly oriented: if#(false(),s(X),s(Y)) = 7 + 3*X + 2*X*Y + 3*Y > 6 + 3*X + 2*X*Y + 3*Y = c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) = 7 + 3*X + 2*X*Y + 3*Y > 6 + 3*X + 2*X*Y + 3*Y = c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) = 3 + 2*Y > 2 + 2*Y = c_10(minus#(X,Y)) Following rules are (at-least) weakly oriented: gcd#(s(X),s(Y)) = 7 + 3*X + 2*X*Y + 3*Y >= 7 + 3*X + 2*X*Y + 3*Y = c_3(if#(le(Y,X),s(X),s(Y))) minus(X,0()) = X >= X = X minus(X,s(Y)) = X >= X = pred(minus(X,Y)) pred(s(X)) = 1 + X >= X = X **** Step 1.b:6.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) - Weak DPs: if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) minus#(X,s(Y)) -> c_10(minus#(X,Y)) - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) -->_1 if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)):3 -->_1 if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)):2 2:W:if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))):1 3:W:if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) -->_2 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 -->_1 gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))):1 4:W:minus#(X,s(Y)) -> c_10(minus#(X,Y)) -->_1 minus#(X,s(Y)) -> c_10(minus#(X,Y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: gcd#(s(X),s(Y)) -> c_3(if#(le(Y,X),s(X),s(Y))) 3: if#(true(),s(X),s(Y)) -> c_5(gcd#(minus(X,Y),s(Y)),minus#(X,Y)) 2: if#(false(),s(X),s(Y)) -> c_4(gcd#(minus(Y,X),s(X)),minus#(Y,X)) 4: minus#(X,s(Y)) -> c_10(minus#(X,Y)) **** Step 1.b:6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: le(0(),Y) -> true() le(s(X),0()) -> false() le(s(X),s(Y)) -> le(X,Y) minus(X,0()) -> X minus(X,s(Y)) -> pred(minus(X,Y)) pred(s(X)) -> X - Signature: {gcd/2,if/3,le/2,minus/2,pred/1,gcd#/2,if#/3,le#/2,minus#/2,pred#/1} / {0/0,false/0,s/1,true/0,c_1/0,c_2/0 ,c_3/1,c_4/2,c_5/2,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {gcd#,if#,le#,minus#,pred#} and constructors {0,false,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))