* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: eq(x,y){x -> s(x),y -> s(y)} = eq(s(x),s(y)) ->^+ eq(x,y) = C[eq(x,y) = eq(x,y){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x2 + [4] p(eq) = [1] p(false) = [0] p(ifrm) = [1] x1 + [0] p(nil) = [0] p(purge) = [1] x1 + [0] p(rm) = [0] p(s) = [1] x1 + [0] p(true) = [0] Following rules are strictly oriented: eq(0(),0()) = [1] > [0] = true() eq(0(),s(X)) = [1] > [0] = false() eq(s(X),0()) = [1] > [0] = false() Following rules are (at-least) weakly oriented: eq(s(X),s(Y)) = [1] >= [1] = eq(X,Y) ifrm(false(),N,add(M,X)) = [0] >= [4] = add(M,rm(N,X)) ifrm(true(),N,add(M,X)) = [0] >= [0] = rm(N,X) purge(add(N,X)) = [1] X + [4] >= [4] = add(N,purge(rm(N,X))) purge(nil()) = [0] >= [0] = nil() rm(N,add(M,X)) = [0] >= [1] = ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) = [0] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x2 + [8] p(eq) = [10] p(false) = [0] p(ifrm) = [1] x1 + [1] x3 + [5] p(nil) = [2] p(purge) = [1] x1 + [8] p(rm) = [1] x2 + [11] p(s) = [1] x1 + [1] p(true) = [1] Following rules are strictly oriented: ifrm(true(),N,add(M,X)) = [1] X + [14] > [1] X + [11] = rm(N,X) purge(nil()) = [10] > [2] = nil() rm(N,nil()) = [13] > [2] = nil() Following rules are (at-least) weakly oriented: eq(0(),0()) = [10] >= [1] = true() eq(0(),s(X)) = [10] >= [0] = false() eq(s(X),0()) = [10] >= [0] = false() eq(s(X),s(Y)) = [10] >= [10] = eq(X,Y) ifrm(false(),N,add(M,X)) = [1] X + [13] >= [1] X + [19] = add(M,rm(N,X)) purge(add(N,X)) = [1] X + [16] >= [1] X + [27] = add(N,purge(rm(N,X))) rm(N,add(M,X)) = [1] X + [19] >= [1] X + [23] = ifrm(eq(N,M),N,add(M,X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) purge(add(N,X)) -> add(N,purge(rm(N,X))) rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() ifrm(true(),N,add(M,X)) -> rm(N,X) purge(nil()) -> nil() rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x2 + [8] p(eq) = [4] p(false) = [2] p(ifrm) = [1] x1 + [12] p(nil) = [0] p(purge) = [1] x1 + [2] p(rm) = [2] p(s) = [0] p(true) = [4] Following rules are strictly oriented: ifrm(false(),N,add(M,X)) = [14] > [10] = add(M,rm(N,X)) Following rules are (at-least) weakly oriented: eq(0(),0()) = [4] >= [4] = true() eq(0(),s(X)) = [4] >= [2] = false() eq(s(X),0()) = [4] >= [2] = false() eq(s(X),s(Y)) = [4] >= [4] = eq(X,Y) ifrm(true(),N,add(M,X)) = [16] >= [2] = rm(N,X) purge(add(N,X)) = [1] X + [10] >= [12] = add(N,purge(rm(N,X))) purge(nil()) = [2] >= [0] = nil() rm(N,add(M,X)) = [2] >= [16] = ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) = [2] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(s(X),s(Y)) -> eq(X,Y) purge(add(N,X)) -> add(N,purge(rm(N,X))) rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(nil()) -> nil() rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: {eq,ifrm,purge,rm} TcT has computed the following interpretation: p(0) = [0] p(add) = [1] x_1 + [1] x_2 + [4] p(eq) = [0] p(false) = [0] p(ifrm) = [8] x_1 + [1] x_3 + [0] p(nil) = [1] p(purge) = [2] x_1 + [1] p(rm) = [1] x_2 + [0] p(s) = [1] x_1 + [0] p(true) = [0] Following rules are strictly oriented: purge(add(N,X)) = [2] N + [2] X + [9] > [1] N + [2] X + [5] = add(N,purge(rm(N,X))) Following rules are (at-least) weakly oriented: eq(0(),0()) = [0] >= [0] = true() eq(0(),s(X)) = [0] >= [0] = false() eq(s(X),0()) = [0] >= [0] = false() eq(s(X),s(Y)) = [0] >= [0] = eq(X,Y) ifrm(false(),N,add(M,X)) = [1] M + [1] X + [4] >= [1] M + [1] X + [4] = add(M,rm(N,X)) ifrm(true(),N,add(M,X)) = [1] M + [1] X + [4] >= [1] X + [0] = rm(N,X) purge(nil()) = [3] >= [1] = nil() rm(N,add(M,X)) = [1] M + [1] X + [4] >= [1] M + [1] X + [4] = ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) = [1] >= [1] = nil() ** Step 1.b:5: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(s(X),s(Y)) -> eq(X,Y) rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: {eq,ifrm,purge,rm} TcT has computed the following interpretation: p(0) = [0] [0] p(add) = [1 4] x_1 + [1 4] x_2 + [0] [0 0] [0 1] [4] p(eq) = [2] [0] p(false) = [2] [0] p(ifrm) = [2 0] x_1 + [0 2] x_2 + [1 2] x_3 + [0] [0 0] [0 0] [0 1] [0] p(nil) = [1] [0] p(purge) = [2 3] x_1 + [2] [0 1] [0] p(rm) = [0 2] x_1 + [1 2] x_2 + [5] [0 0] [0 1] [0] p(s) = [0] [2] p(true) = [2] [0] Following rules are strictly oriented: rm(N,add(M,X)) = [1 4] M + [0 2] N + [1 6] X + [13] [0 0] [0 0] [0 1] [4] > [1 4] M + [0 2] N + [1 6] X + [12] [0 0] [0 0] [0 1] [4] = ifrm(eq(N,M),N,add(M,X)) Following rules are (at-least) weakly oriented: eq(0(),0()) = [2] [0] >= [2] [0] = true() eq(0(),s(X)) = [2] [0] >= [2] [0] = false() eq(s(X),0()) = [2] [0] >= [2] [0] = false() eq(s(X),s(Y)) = [2] [0] >= [2] [0] = eq(X,Y) ifrm(false(),N,add(M,X)) = [1 4] M + [0 2] N + [1 6] X + [12] [0 0] [0 0] [0 1] [4] >= [1 4] M + [0 2] N + [1 6] X + [5] [0 0] [0 0] [0 1] [4] = add(M,rm(N,X)) ifrm(true(),N,add(M,X)) = [1 4] M + [0 2] N + [1 6] X + [12] [0 0] [0 0] [0 1] [4] >= [0 2] N + [1 2] X + [5] [0 0] [0 1] [0] = rm(N,X) purge(add(N,X)) = [2 8] N + [2 11] X + [14] [0 0] [0 1] [4] >= [1 8] N + [2 11] X + [12] [0 0] [0 1] [4] = add(N,purge(rm(N,X))) purge(nil()) = [4] [0] >= [1] [0] = nil() rm(N,nil()) = [0 2] N + [6] [0 0] [0] >= [1] [0] = nil() ** Step 1.b:6: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: eq(s(X),s(Y)) -> eq(X,Y) - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity (Just 2))), miDimension = 3, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity (Just 2))): The following argument positions are considered usable: uargs(add) = {2}, uargs(ifrm) = {1}, uargs(purge) = {1} Following symbols are considered usable: {eq,ifrm,purge,rm} TcT has computed the following interpretation: p(0) = [2] [0] [5] p(add) = [0 2 0] [1 0 2] [0] [0 0 0] x_1 + [0 0 1] x_2 + [1] [0 0 1] [0 0 1] [5] p(eq) = [0 0 0] [0 0 1] [0] [0 0 2] x_1 + [1 0 0] x_2 + [2] [4 0 0] [3 0 0] [1] p(false) = [1] [6] [0] p(ifrm) = [1 0 0] [0 0 0] [1 1 0] [4] [0 0 0] x_1 + [0 1 0] x_2 + [0 0 1] x_3 + [0] [0 0 0] [0 0 0] [0 0 1] [0] p(nil) = [0] [0] [4] p(purge) = [4 4 1] [2] [0 0 2] x_1 + [4] [0 0 1] [3] p(rm) = [0 0 0] [1 0 1] [0] [0 1 0] x_1 + [0 0 1] x_2 + [0] [0 0 0] [0 0 1] [0] p(s) = [1 0 2] [2] [0 0 1] x_1 + [1] [0 0 1] [1] p(true) = [5] [4] [0] Following rules are strictly oriented: eq(s(X),s(Y)) = [0 0 0] [0 0 1] [1] [0 0 2] X + [1 0 2] Y + [6] [4 0 8] [3 0 6] [15] > [0 0 0] [0 0 1] [0] [0 0 2] X + [1 0 0] Y + [2] [4 0 0] [3 0 0] [1] = eq(X,Y) Following rules are (at-least) weakly oriented: eq(0(),0()) = [5] [14] [15] >= [5] [4] [0] = true() eq(0(),s(X)) = [0 0 1] [1] [1 0 2] X + [14] [3 0 6] [15] >= [1] [6] [0] = false() eq(s(X),0()) = [0 0 0] [5] [0 0 2] X + [6] [4 0 8] [15] >= [1] [6] [0] = false() ifrm(false(),N,add(M,X)) = [0 2 0] [0 0 0] [1 0 3] [6] [0 0 1] M + [0 1 0] N + [0 0 1] X + [5] [0 0 1] [0 0 0] [0 0 1] [5] >= [0 2 0] [1 0 3] [0] [0 0 0] M + [0 0 1] X + [1] [0 0 1] [0 0 1] [5] = add(M,rm(N,X)) ifrm(true(),N,add(M,X)) = [0 2 0] [0 0 0] [1 0 3] [10] [0 0 1] M + [0 1 0] N + [0 0 1] X + [5] [0 0 1] [0 0 0] [0 0 1] [5] >= [0 0 0] [1 0 1] [0] [0 1 0] N + [0 0 1] X + [0] [0 0 0] [0 0 1] [0] = rm(N,X) purge(add(N,X)) = [0 8 1] [4 0 13] [11] [0 0 2] N + [0 0 2] X + [14] [0 0 1] [0 0 1] [8] >= [0 6 0] [4 0 11] [8] [0 0 0] N + [0 0 1] X + [4] [0 0 1] [0 0 1] [8] = add(N,purge(rm(N,X))) purge(nil()) = [6] [12] [7] >= [0] [0] [4] = nil() rm(N,add(M,X)) = [0 2 1] [0 0 0] [1 0 3] [5] [0 0 1] M + [0 1 0] N + [0 0 1] X + [5] [0 0 1] [0 0 0] [0 0 1] [5] >= [0 2 1] [0 0 0] [1 0 3] [5] [0 0 1] M + [0 1 0] N + [0 0 1] X + [5] [0 0 1] [0 0 0] [0 0 1] [5] = ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) = [0 0 0] [4] [0 1 0] N + [4] [0 0 0] [4] >= [0] [0] [4] = nil() ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: eq(0(),0()) -> true() eq(0(),s(X)) -> false() eq(s(X),0()) -> false() eq(s(X),s(Y)) -> eq(X,Y) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) purge(add(N,X)) -> add(N,purge(rm(N,X))) purge(nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) rm(N,nil()) -> nil() - Signature: {eq/2,ifrm/3,purge/1,rm/2} / {0/0,add/2,false/0,nil/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {eq,ifrm,purge,rm} and constructors {0,add,false,nil,s ,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))