(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
concat(leaf, Y) → Y
concat(cons(U, V), Y) → cons(U, concat(V, Y))
lessleaves(X, leaf) → false
lessleaves(leaf, cons(W, Z)) → true
lessleaves(cons(U, V), cons(W, Z)) → lessleaves(concat(U, V), concat(W, Z))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
leaf0() → 0
cons0(0, 0) → 0
false0() → 0
true0() → 0
concat0(0, 0) → 1
lessleaves0(0, 0) → 2
concat1(0, 0) → 3
cons1(0, 3) → 1
false1() → 2
true1() → 2
concat1(0, 0) → 4
concat1(0, 0) → 5
lessleaves1(4, 5) → 2
cons1(0, 3) → 3
cons1(0, 3) → 4
cons1(0, 3) → 5
concat1(0, 3) → 5
concat1(0, 3) → 4
concat2(0, 3) → 6
concat2(0, 3) → 7
lessleaves2(6, 7) → 2
concat1(0, 3) → 3
0 → 1
0 → 3
0 → 4
0 → 5
3 → 4
3 → 5
3 → 6
3 → 7
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
Tuples:
CONCAT(leaf, z0) → c
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(z0, leaf) → c2
LESSLEAVES(leaf, cons(z0, z1)) → c3
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(leaf, z0) → c
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(z0, leaf) → c2
LESSLEAVES(leaf, cons(z0, z1)) → c3
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
concat, lessleaves
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c, c1, c2, c3, c4
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
LESSLEAVES(leaf, cons(z0, z1)) → c3
CONCAT(leaf, z0) → c
LESSLEAVES(z0, leaf) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
concat, lessleaves
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
lessleaves(z0, leaf) → false
lessleaves(leaf, cons(z0, z1)) → true
lessleaves(cons(z0, z1), cons(z2, z3)) → lessleaves(concat(z0, z1), concat(z2, z3))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
concat
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONCAT(x1, x2)) = 0
POL(LESSLEAVES(x1, x2)) = x2
POL(c1(x1)) = x1
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(concat(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(leaf) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
K tuples:
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
Defined Rule Symbols:
concat
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONCAT(x1, x2)) = [2]x1 + x2
POL(LESSLEAVES(x1, x2)) = x22 + x12
POL(c1(x1)) = x1
POL(c4(x1, x2, x3)) = x1 + x2 + x3
POL(concat(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(leaf) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:none
K tuples:
LESSLEAVES(cons(z0, z1), cons(z2, z3)) → c4(LESSLEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
CONCAT(cons(z0, z1), z2) → c1(CONCAT(z1, z2))
Defined Rule Symbols:
concat
Defined Pair Symbols:
CONCAT, LESSLEAVES
Compound Symbols:
c1, c4
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)