* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(0(),y,0(),u) -> true()
f(0(),y,s(z),u) -> false()
f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
if(false(),x,y) -> y
if(true(),x,y) -> x
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(0(),y) -> 0()
minus(s(x),0()) -> s(x)
minus(s(x),s(y)) -> minus(x,y)
perfectp(0()) -> false()
perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
- Signature:
{f/4,if/3,le/2,minus/2,perfectp/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,if,le,minus,perfectp} and constructors {0,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(0(),y,0(),u) -> true()
f(0(),y,s(z),u) -> false()
f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
if(false(),x,y) -> y
if(true(),x,y) -> x
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(0(),y) -> 0()
minus(s(x),0()) -> s(x)
minus(s(x),s(y)) -> minus(x,y)
perfectp(0()) -> false()
perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
- Signature:
{f/4,if/3,le/2,minus/2,perfectp/1} / {0/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {f,if,le,minus,perfectp} and constructors {0,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
le(x,y){x -> s(x),y -> s(y)} =
le(s(x),s(y)) ->^+ le(x,y)
= C[le(x,y) = le(x,y){}]
WORST_CASE(Omega(n^1),?)