* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(0(),y,0(),u) -> true()
            f(0(),y,s(z),u) -> false()
            f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
            f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
            perfectp(0()) -> false()
            perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
        - Signature:
            {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(0(),y,0(),u) -> true()
            f(0(),y,s(z),u) -> false()
            f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
            f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
            perfectp(0()) -> false()
            perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
        - Signature:
            {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
                   p(f) = [6] x4 + [6]         
               p(false) = [0]                  
                  p(if) = [1] x1 + [1] x3 + [4]
                  p(le) = [0]                  
               p(minus) = [4]                  
            p(perfectp) = [8] x1 + [4]         
                   p(s) = [0]                  
                p(true) = [1]                  
          
          Following rules are strictly oriented:
           f(0(),y,0(),u) = [6] u + [6]
                          > [1]        
                          = true()     
          
          f(0(),y,s(z),u) = [6] u + [6]
                          > [0]        
                          = false()    
          
            perfectp(0()) = [12]       
                          > [0]        
                          = false()    
          
          
          Following rules are (at-least) weakly oriented:
           f(s(x),0(),z,u) =  [6] u + [6]                                  
                           >= [6] u + [6]                                  
                           =  f(x,u,minus(z,s(x)),u)                       
          
          f(s(x),s(y),z,u) =  [6] u + [6]                                  
                           >= [6] u + [10]                                 
                           =  if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
          
            perfectp(s(x)) =  [4]                                          
                           >= [6]                                          
                           =  f(x,s(0()),s(x),s(x))                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
            f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
            perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
        - Weak TRS:
            f(0(),y,0(),u) -> true()
            f(0(),y,s(z),u) -> false()
            perfectp(0()) -> false()
        - Signature:
            {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]          
                   p(f) = [4] x3 + [8] 
               p(false) = [1]          
                  p(if) = [1] x3 + [12]
                  p(le) = [1] x2 + [0] 
               p(minus) = [1] x1 + [5] 
            p(perfectp) = [8] x1 + [8] 
                   p(s) = [1]          
                p(true) = [1]          
          
          Following rules are strictly oriented:
          perfectp(s(x)) = [16]                 
                         > [12]                 
                         = f(x,s(0()),s(x),s(x))
          
          
          Following rules are (at-least) weakly oriented:
            f(0(),y,0(),u) =  [8]                                          
                           >= [1]                                          
                           =  true()                                       
          
           f(0(),y,s(z),u) =  [12]                                         
                           >= [1]                                          
                           =  false()                                      
          
           f(s(x),0(),z,u) =  [4] z + [8]                                  
                           >= [4] z + [28]                                 
                           =  f(x,u,minus(z,s(x)),u)                       
          
          f(s(x),s(y),z,u) =  [4] z + [8]                                  
                           >= [4] z + [20]                                 
                           =  if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
          
             perfectp(0()) =  [8]                                          
                           >= [1]                                          
                           =  false()                                      
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
            f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
        - Weak TRS:
            f(0(),y,0(),u) -> true()
            f(0(),y,s(z),u) -> false()
            perfectp(0()) -> false()
            perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
        - Signature:
            {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(if) = {3}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                   
                   p(f) = [2] x1 + [1] x3 + [2] 
               p(false) = [1]                   
                  p(if) = [1] x1 + [1] x3 + [13]
                  p(le) = [1]                   
               p(minus) = [12]                  
            p(perfectp) = [3] x1 + [1]          
                   p(s) = [1] x1 + [8]          
                p(true) = [1]                   
          
          Following rules are strictly oriented:
           f(s(x),0(),z,u) = [2] x + [1] z + [18]                         
                           > [2] x + [14]                                 
                           = f(x,u,minus(z,s(x)),u)                       
          
          f(s(x),s(y),z,u) = [2] x + [1] z + [18]                         
                           > [2] x + [1] z + [16]                         
                           = if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
          
          
          Following rules are (at-least) weakly oriented:
           f(0(),y,0(),u) =  [2]                  
                          >= [1]                  
                          =  true()               
          
          f(0(),y,s(z),u) =  [1] z + [10]         
                          >= [1]                  
                          =  false()              
          
            perfectp(0()) =  [1]                  
                          >= [1]                  
                          =  false()              
          
           perfectp(s(x)) =  [3] x + [25]         
                          >= [3] x + [10]         
                          =  f(x,s(0()),s(x),s(x))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(0(),y,0(),u) -> true()
            f(0(),y,s(z),u) -> false()
            f(s(x),0(),z,u) -> f(x,u,minus(z,s(x)),u)
            f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u))
            perfectp(0()) -> false()
            perfectp(s(x)) -> f(x,s(0()),s(x),s(x))
        - Signature:
            {f/4,perfectp/1} / {0/0,false/0,if/3,le/2,minus/2,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,perfectp} and constructors {0,false,if,le,minus,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))