* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(a,cons(x,k)) -> f(cons(x,a),k)
            f(a,empty()) -> g(a,empty())
            g(cons(x,k),d) -> g(k,cons(x,d))
            g(empty(),d) -> d
        - Signature:
            {f/2,g/2} / {cons/2,empty/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(a,cons(x,k)) -> f(cons(x,a),k)
            f(a,empty()) -> g(a,empty())
            g(cons(x,k),d) -> g(k,cons(x,d))
            g(empty(),d) -> d
        - Signature:
            {f/2,g/2} / {cons/2,empty/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x,z){z -> cons(y,z)} =
            f(x,cons(y,z)) ->^+ f(cons(y,x),z)
              = C[f(cons(y,x),z) = f(x,z){x -> cons(y,x)}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            f(a,cons(x,k)) -> f(cons(x,a),k)
            f(a,empty()) -> g(a,empty())
            g(cons(x,k),d) -> g(k,cons(x,d))
            g(empty(),d) -> d
        - Signature:
            {f/2,g/2} / {cons/2,empty/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty}
    + Applied Processor:
        Bounds {initialAutomaton = perSymbol, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          cons_0(1,1) -> 1
          cons_0(1,1) -> 4
          cons_0(1,2) -> 1
          cons_0(1,2) -> 4
          cons_0(2,1) -> 1
          cons_0(2,1) -> 4
          cons_0(2,2) -> 1
          cons_0(2,2) -> 4
          cons_1(1,1) -> 4
          cons_1(1,1) -> 5
          cons_1(1,2) -> 4
          cons_1(1,2) -> 5
          cons_1(1,5) -> 4
          cons_1(1,5) -> 5
          cons_1(1,6) -> 3
          cons_1(1,6) -> 6
          cons_1(1,7) -> 3
          cons_1(1,7) -> 6
          cons_1(2,1) -> 4
          cons_1(2,1) -> 5
          cons_1(2,2) -> 4
          cons_1(2,2) -> 5
          cons_1(2,5) -> 4
          cons_1(2,5) -> 5
          cons_1(2,6) -> 3
          cons_1(2,6) -> 6
          cons_1(2,7) -> 3
          cons_1(2,7) -> 6
          cons_2(1,6) -> 3
          cons_2(1,6) -> 7
          cons_2(1,7) -> 3
          cons_2(1,7) -> 7
          cons_2(2,6) -> 3
          cons_2(2,6) -> 7
          cons_2(2,7) -> 3
          cons_2(2,7) -> 7
          empty_0() -> 2
          empty_0() -> 4
          empty_1() -> 3
          empty_1() -> 6
          f_0(1,1) -> 3
          f_0(1,2) -> 3
          f_0(2,1) -> 3
          f_0(2,2) -> 3
          f_1(5,1) -> 3
          f_1(5,2) -> 3
          g_0(1,1) -> 4
          g_0(1,2) -> 4
          g_0(2,1) -> 4
          g_0(2,2) -> 4
          g_1(1,5) -> 4
          g_1(1,6) -> 3
          g_1(2,5) -> 4
          g_1(2,6) -> 3
          g_1(5,6) -> 3
          g_2(1,7) -> 3
          g_2(2,7) -> 3
          g_2(5,7) -> 3
          1 -> 4
          2 -> 4
          5 -> 4
          6 -> 3
          7 -> 3
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            f(a,cons(x,k)) -> f(cons(x,a),k)
            f(a,empty()) -> g(a,empty())
            g(cons(x,k),d) -> g(k,cons(x,d))
            g(empty(),d) -> d
        - Signature:
            {f/2,g/2} / {cons/2,empty/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))