* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3} / {cons/2,empty/0} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {cons,empty} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Strict TRS: f(cons(x,k),l) -> g(k,l,cons(x,k)) f(empty(),l) -> l g(a,b,c) -> f(a,cons(b,c)) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) * Step 4: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) f#(empty(),l) -> c_2() g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {3}. Here rules are labelled as follows: 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 2: f#(empty(),l) -> c_2() 3: g#(a,b,c) -> c_3(f#(a,cons(b,c))) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak DPs: f#(empty(),l) -> c_2() - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):2 2:S:g#(a,b,c) -> c_3(f#(a,cons(b,c))) -->_1 f#(empty(),l) -> c_2():3 -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 3:W:f#(empty(),l) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(empty(),l) -> c_2() * Step 6: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) Consider the set of all dependency pairs 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 2: g#(a,b,c) -> c_3(f#(a,cons(b,c))) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. ** Step 6.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(cons) = [1] x1 + [1] x2 + [2] p(empty) = [1] p(f) = [1] x1 + [0] p(g) = [2] x1 + [1] x2 + [1] p(f#) = [8] x1 + [0] p(g#) = [8] x1 + [0] p(c_1) = [1] x1 + [8] p(c_2) = [1] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: f#(cons(x,k),l) = [8] k + [8] x + [16] > [8] k + [8] = c_1(g#(k,l,cons(x,k))) Following rules are (at-least) weakly oriented: g#(a,b,c) = [8] a + [0] >= [8] a + [0] = c_3(f#(a,cons(b,c))) ** Step 6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) g#(a,b,c) -> c_3(f#(a,cons(b,c))) - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) -->_1 g#(a,b,c) -> c_3(f#(a,cons(b,c))):2 2:W:g#(a,b,c) -> c_3(f#(a,cons(b,c))) -->_1 f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: f#(cons(x,k),l) -> c_1(g#(k,l,cons(x,k))) 2: g#(a,b,c) -> c_3(f#(a,cons(b,c))) ** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {f/2,g/3,f#/2,g#/3} / {cons/2,empty/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {cons,empty} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))