(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
rev(ls) → r1(ls, empty)
r1(empty, a) → a
r1(cons(x, k), a) → r1(k, cons(x, a))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
empty0() → 0
cons0(0, 0) → 0
rev0(0) → 1
r10(0, 0) → 2
empty1() → 3
r11(0, 3) → 1
cons1(0, 0) → 4
r11(0, 4) → 2
cons1(0, 3) → 4
r11(0, 4) → 1
cons1(0, 4) → 4
0 → 2
3 → 1
4 → 2
4 → 1
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
Tuples:
REV(z0) → c(R1(z0, empty))
R1(empty, z0) → c1
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
REV(z0) → c(R1(z0, empty))
R1(empty, z0) → c1
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
rev, r1
Defined Pair Symbols:
REV, R1
Compound Symbols:
c, c1, c2
(5) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
REV(z0) → c(R1(z0, empty))
Removed 1 trailing nodes:
R1(empty, z0) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:
rev, r1
Defined Pair Symbols:
R1
Compound Symbols:
c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
rev(z0) → r1(z0, empty)
r1(empty, z0) → z0
r1(cons(z0, z1), z2) → r1(z1, cons(z0, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
R1
Compound Symbols:
c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(R1(x1, x2)) = x1
POL(c2(x1)) = x1
POL(cons(x1, x2)) = [1] + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
S tuples:none
K tuples:
R1(cons(z0, z1), z2) → c2(R1(z1, cons(z0, z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
R1
Compound Symbols:
c2
(11) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(12) BOUNDS(1, 1)