* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y - Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {copy,f} and constructors {0,cons,n,nil,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y - Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {copy,f} and constructors {0,cons,n,nil,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: copy(x,y,z){x -> s(x)} = copy(s(x),y,z) ->^+ copy(x,y,cons(f(y),z)) = C[copy(x,y,cons(f(y),z)) = copy(x,y,z){z -> cons(f(y),z)}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) f(cons(nil(),y)) -> y - Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {copy,f} and constructors {0,cons,n,nil,s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. f(cons(f(cons(nil(),y)),z)) -> copy(n(),y,z) All above mentioned rules can be savely removed. ** Step 1.b:2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(nil(),y)) -> y - Signature: {copy/3,f/1} / {0/0,cons/2,n/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {copy,f} and constructors {0,cons,n,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() Weak DPs and mark the set of starting terms. ** Step 1.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() - Weak TRS: copy(0(),y,z) -> f(z) copy(s(x),y,z) -> copy(x,y,cons(f(y),z)) f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f(cons(nil(),y)) -> y copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() ** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) f#(cons(nil(),y)) -> c_3() - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3} by application of Pre({3}) = {1,2}. Here rules are labelled as follows: 1: copy#(0(),y,z) -> c_1(f#(z)) 2: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) 3: f#(cons(nil(),y)) -> c_3() ** Step 1.b:5: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(0(),y,z) -> c_1(f#(z)) copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) - Weak DPs: f#(cons(nil(),y)) -> c_3() - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: copy#(0(),y,z) -> c_1(f#(z)) 2: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) 3: f#(cons(nil(),y)) -> c_3() ** Step 1.b:6: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) - Weak DPs: copy#(0(),y,z) -> c_1(f#(z)) f#(cons(nil(),y)) -> c_3() - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) -->_1 copy#(0(),y,z) -> c_1(f#(z)):2 -->_2 f#(cons(nil(),y)) -> c_3():3 -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)):1 2:W:copy#(0(),y,z) -> c_1(f#(z)) -->_1 f#(cons(nil(),y)) -> c_3():3 3:W:f#(cons(nil(),y)) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: copy#(0(),y,z) -> c_1(f#(z)) 3: f#(cons(nil(),y)) -> c_3() ** Step 1.b:7: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/2,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)) -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z)),f#(y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) ** Step 1.b:8: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) The strictly oriented rules are moved into the weak component. *** Step 1.b:8.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {copy#,f#} TcT has computed the following interpretation: p(0) = [1] p(cons) = [1] x1 + [2] p(copy) = [1] x1 + [1] p(f) = [2] x1 + [0] p(n) = [1] p(nil) = [6] p(s) = [1] x1 + [2] p(copy#) = [8] x1 + [1] x2 + [0] p(f#) = [1] x1 + [1] p(c_1) = [2] p(c_2) = [1] x1 + [12] p(c_3) = [1] Following rules are strictly oriented: copy#(s(x),y,z) = [8] x + [1] y + [16] > [8] x + [1] y + [12] = c_2(copy#(x,y,cons(f(y),z))) Following rules are (at-least) weakly oriented: *** Step 1.b:8.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 1.b:8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) -->_1 copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: copy#(s(x),y,z) -> c_2(copy#(x,y,cons(f(y),z))) *** Step 1.b:8.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(cons(nil(),y)) -> y - Signature: {copy/3,f/1,copy#/3,f#/1} / {0/0,cons/2,n/0,nil/0,s/1,c_1/1,c_2/1,c_3/0} - Obligation: innermost runtime complexity wrt. defined symbols {copy#,f#} and constructors {0,cons,n,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))