* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            -(x,0()) -> x
            -(s(x),s(y)) -> -(x,y)
            gcd(x,0(),0()) -> x
            gcd(x,s(y),s(z)) -> gcd(x,-(max(y,z),min(y,z)),s(min(y,z)))
            gcd(0(),y,0()) -> y
            gcd(0(),0(),z) -> z
            gcd(s(x),y,s(z)) -> gcd(-(max(x,z),min(x,z)),y,s(min(x,z)))
            gcd(s(x),s(y),z) -> gcd(-(max(x,y),min(x,y)),s(min(x,y)),z)
            max(x,0()) -> x
            max(0(),y) -> y
            max(s(x),s(y)) -> s(max(x,y))
            min(x,0()) -> 0()
            min(0(),y) -> 0()
            min(s(x),s(y)) -> s(min(x,y))
        - Signature:
            {-/2,gcd/3,max/2,min/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,gcd,max,min} and constructors {0,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            -(x,0()) -> x
            -(s(x),s(y)) -> -(x,y)
            gcd(x,0(),0()) -> x
            gcd(x,s(y),s(z)) -> gcd(x,-(max(y,z),min(y,z)),s(min(y,z)))
            gcd(0(),y,0()) -> y
            gcd(0(),0(),z) -> z
            gcd(s(x),y,s(z)) -> gcd(-(max(x,z),min(x,z)),y,s(min(x,z)))
            gcd(s(x),s(y),z) -> gcd(-(max(x,y),min(x,y)),s(min(x,y)),z)
            max(x,0()) -> x
            max(0(),y) -> y
            max(s(x),s(y)) -> s(max(x,y))
            min(x,0()) -> 0()
            min(0(),y) -> 0()
            min(s(x),s(y)) -> s(min(x,y))
        - Signature:
            {-/2,gcd/3,max/2,min/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {-,gcd,max,min} and constructors {0,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          -(x,y){x -> s(x),y -> s(y)} =
            -(s(x),s(y)) ->^+ -(x,y)
              = C[-(x,y) = -(x,y){}]

WORST_CASE(Omega(n^1),?)